ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 05.08.2024
Просмотров: 312
Скачиваний: 0
СОДЕРЖАНИЕ
Министерство образования Российской Федерации
Б.М. Балоян, а.Г. Колмаков, м.И. Алымов, а.М. Кротов
1. Наноматериалы и нанотехнологии – история, современность и перспективы
2. Понятие о наноматериалах. Основы классификации и типы структур наноматериалов.
2.2. Основы классификации наноматериалов
2.3. Основные типы структур наноматериалов
3. Особенности свойств наноматериалов и основные направления их использования
3.1. Физические причины специфики наноматериалов
3.2. Основные области применения наноматериалов и возможные ограничения
Ограничения в использовании наноматериалов
4.1. Методы порошковой металлургии
4.1.1 Методы получения нанопорошков
Методы физического осаждения из паровой фазы
4.1.2. Методы формования изделий из нанопорошков.
4.2. Методы с использованием аморфизации
4.3. Методы с использованием интенсивной пластической деформации
4.4. Методы с использованием технологий обработки поверхности
4.4.1. Технологии, основанные на физических процессах Методы физического осаждения из паровой фазы
4.4.2. Технологии, основанные на химических процессах
5. Фуллерены, фуллериты, нанотрубки
6. Квантовые точки, нанопроволоки и нановолокна
7. Основные методы исследования наноматериалов
7.2. Спектральные методы исследования.
7.3. Сканирующие зондовые методы исследования
7. Основные методы исследования наноматериалов
Рис. 7.3. Принципиальная схема растрового электронного микроскопа [128,129]: 1- катод, 2- цилиндр Венельта, 3- анод, 4,10 – ограничивающие диафрагмы, 5,6- конденсорные линзы, 7- отклоняющие катушки, 8- стигматор, 9- объективная линза, 11- детектор рентгеновского излучения, 12- усилитель, 13- генератор развертки, 14- изучаемый образец, 15- детектор вторичных электронов, 16- подача сигнала на отклоняющие катушки, 17- управление увеличением, 18- электронно-лучевая трубка.
формируются в элдектронный луч (зонд) с помощью системы диафрагм, линз, стигматоров и т.п.. Отклоняющие катушки, соединенные с генератором, обеспечивают синхронную с электронно-лучевой трубкой развертку (сканирование) электронного зонда по изучаемому участку поверхности образца. Формирование яркости изображения осуществляется по сигналам от детекторов отраженных электронов, вторичных электронов и рентгеновского излучения. Управление увеличением (от 20 до 10000) осуществляется специальным устройством путем изменения отношения амплитуд развертки луча по экрану и электронного зонда по образцу.
В связи с тем, что при облучении материала электронами возникает рентгеновское излучение в РЭМ широкое применение находит также метод рентгеноспектрального микроанализа (РСМА). Поэтому почти для всех растровых электронных микроскопов предусмотрено конструктивное совмещение этих методов. Имеется возможность регистрировать спектры длин волн компонентов рентгеновского излучения и энергий рентгеновских квантов. Это обеспечивает проведение высокочувствительного (десятые –
тысячные дошли процента) качественного и количественного анализа химического состава поверхности изучаемого материала, в том числе в отдельно выбранной точке. Пространственное разрешение РСМА составляет до 200-500 нм и сильно зависит от качества подготовки поверхности образцов.
7.2. Спектральные методы исследования.
К спектральным методам обычно относят методы исследования поверхности твердых тел, основанные на анализе энергетических спектров отраженных излучений, возникающих при облучении изучаемого материала электронами, ионами и фотонами (рис. 7.4). Таких методов в настоящее время известно несколько десятков. Однако не все из этих методов имеют преимущественное или особенное применение в области исследования наноматериалов. Так, например широко известный метод рентгеноспектрального микроанализа имеет при количественном анализе диаметр анализируемого участка на образце не лучше 1-2 мкм, а метод рентгеновская фотоэлектронная спектроскопия – даже 2-10 мм. В связи с этим ниже будет рассмотрен ряд методов, которые с одной стороны по своим возможностям представляют интерес именно для изучения наноматериалов, а с другой - являются наиболее иллюстративными и достаточно широко используемыми.
Электронная Оже-спектроскопия (AES)
Этот метод основан на энергетическом анализе вторичных Оже-электронов. Эффект Оже назван по имени французского физика, открывшего его в 1925 г. Падающий электрон выбивает электрон внутренней оболочки атома. В результате возбуждения атомов на поверхности образца наблюдается эмиссия вторичных электронов. Малая доля из них (порядка 10-5) покидает образец в результате межарбитальных переходов без одновременного испускания фотонов (квантов рентгеновского излучения). Такие электроны называются Оже-электронами. Кинетическая энергия Оже- электрона определяется разницей энергий внутренней оболочки, с которой электрон был выбит, и энергией более высоколежащего энергетического уровня, откуда на образовавшуюся вакансию переходит электрон с выбросом Оже-электрона. По энергии Оже-электронов можно судить о свойствах
Рис. 7.4. Схема принципов работы спектральных методов: а) методы, основанные на электронном облучении, б) методы, основанные на облучении фотонами, в) методы, основанные на ионном облучении; ЭОС – электронная Оже-спектроскопия, ДМЕ – дифракция медленных электронов, ДБЭ - дифракция быстрых электронов, ДНМЭ – дифракция неупругоотраженных медленных электронов, ЭСИД – электронно-стимулированная ионная десорбция, МСЭПЗ – масс-спектроскопия с электронным поверхностным зондом, ЭСД – электронно-стимулированная десорбция, ДПМ – десорбция поверхностных молекул, СХИ – спектроскопия характеристического излучения, СПП – спектроскопия пороговых потенциалов, ЛМА - лазерный микрозондовый анализ, ИКП – инфракрасное поглощение, КРС – комбинированное рассеяние света, ЭМ – элипсометрия видимого света, ФД – фотодесорбция, РФЭС или ЭСХА – рентгеновская фотоэлектронная спектроскопия, ИСР – спектрометрия ионного рассеяния, МСВИ – масс-спектроскопия вторичных ионов, ИНС – ионно-нейтрализационная спектроскопия, ИМАР – ионный микрозонд с анализом рентгеновских лучей, ПИР – рентгеновское излучение, создаваемое протонами [129,130].
атомов, которые их испустили. Таким образом, анализ энергетических спектров Оже-электронов позволяет судить о химическом составе поверхностного слоя исследуемого вещества, а в ряде случаев также дает сведения о химических связях атомов в нем. Существует возможность определения всех элементов тяжелее гелия. В приборах реализующих электронную Оже-спектроскопию энергия электронов в падающем пучке составляет 0,1-3 кэВ [129,130]. При этом исследуется состав поверхности на глубине 0,5-3,0 нм. Основной вклад в сигнал дают первые два-три слоя атомов. Разрешение по поверхности определяется диаметром первичного пучка электронов и составляет до 50 нм.
Масс-спектроскопия вторичных ионов
При этом методе происходит распыление поверхности исследуемого материала пучком ионов с последующим анализом продуктов распыления, а именно выбитых вторичных ионов. Вторичные ионы несут информацию о химическом составе 2-3 поверхностных атомных слоев в зоне зонда и исследуются посредством масс-спектрометра. Метод обладает высокой чувствительностью и позволяет определять все химические элементы, включая водород и гелий. Разрешение по глубине составляет 1-10 нм, а по поверхности зависит от устройства формирования ионного пучка и может составлять от 3 мм до 500 нм, а при использовании специальных источников ионов и до 40 нм [129,130].
Лазерный микрозондовый анализ
Метод основан на использовании пучка импульсного лазерного излучения, под действием которого происходит испарение микрообъема материала из выбранной точки поверхности и его ионизация [130]. Образующиеся ионы анализируются масс-спектрометром. Исследование материала проводят в вакууме. Длительность импульса излучения в ультрафиолетовом диапазоне светового спектра составляет 30 нс и менее. Диаметр пятна достигает порядка 100-500 нм. Благодаря относительно малой плотности энергии в пятне (108-1011Вт/см2), невысокой начальной энергии испарившихся ионов (порядка 60 эВ) и малому рассеянию этой энергии обеспечивается высокая чувствительность анализа при весьма низких одержаниях элементов. Метод позволяет исследовать все виды материалов и анализировать как положительные, так и отрицательные ионы всех химических элементов, а также разрешать изотопы и идентифицировать органические радикалы. Недостатком метода является достаточно низкая точность определения количественного содержания элементов (для основных элементов погрешность до 10 %, а для элементов, присутствующих в очень малом количестве – до 30 %).
7.3. Сканирующие зондовые методы исследования
Данная группа методов является наиболее широко используемой в области наноматериалов и нанотехнологий. Основная идея всех методов данной группы заключается в использовании зонда – устройства считывания информации с поверхности исследуемого материала. В большинстве случаев в качестве рабочего тела зонда используется алмазная игла с радиусом при вершине порядка 10 нм. С помощью высокоточного позиционирующего (сканирующего) механизма зонд перемещают над поверхностью образца по трем координатам. Как правило имеется два диапазона перемещения зонда: грубое перемещение с относительно низкой точностью и высокой скоростью и точное перемещение с достаточно низкой скоростью и высокой точностью позиционирования до 0,1-1 нм. Большая точность позиционирования обеспечивается как правило по высоте. Сигнал от зонда обрабатывается с помощью компьютера и преобразуется в трехмерное изображение. Для обработки снимаемых сигналов, их фильтрации и корректировки используются специальные пакеты программ. Стоимость и размеры зондовых микроскопов, как правило, значительно ниже, чем у электронных, а возможности вполне соизмеримы. Тем более, что для ряда вариантов зондовой микроскопии наличие вакуума не требуется, материалы исследования могут быть самые разнообразные, в том числе изоляторы, полупроводники, биологические объекты. При этом исследования могут проводиться без существенного повреждения объекта и с достаточно простой подготовкой его поверхности (например только полировка отдельного участка).
Сканирующая туннельная микроскопия (STM)
В этом методе в качестве зонда используется электропроводящее острие (рис. 7.5). Между зондом и образцом создается электрическое напряжение порядка 01-10 В. В зазоре возникает туннельный ток величиной около 1-10 нА, который зависит от свойств и конфигурации атомов на исследуемой поверхности материала. Этот ток регистрируется приборами. Туннельным этот метод называется в связи с тем, что ток возникает вследствие туннельного эффекта, а именно квантового перехода электрона через область, запрещенную классической механикой. Этой областью и является зазор величиной 2-10 Å между кончиком иглы и ближайшей точкой поверхности исследуемого материала. Энергия туннелирующих электронов составляет порядка 1 эВ [4]. В современных приборах реализуют режим, при котором величина туннельного тока поддерживается постоянной за счет приборной реализации обратной связи, меняющей величину зазора (перемещением зонда по оси Z). В наиболее благоприятных условиях метод сканирующей туннельной микроскопии обеспечивает разрешение по плоскости (координаты x и y) до 1 Å, а по высоте (координата z) – до 0,01 Å [4]. Имеется много вариантов модернизации и дополнения этого метода. Так сканирующая туннельная спектроскопия основана на анализе вольтамперных характеристик в разных точках поверхности или получении изображений поверхности при разных напряжениях. В первом случае можно по величине второй производной туннельного тока определять тип атома, над которым