ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 26.09.2020
Просмотров: 2859
Скачиваний: 35
СОДЕРЖАНИЕ
Топография с основами геодезии
6.1. Непосредственное измерение расстояний
По теореме синусов определяют расстояние L.
Расхождение между L1 и L2 допускается в пределах 1/1000 ÷ 1/3000 от средней длины L.
6.3. Измерение расстояний оптическими дальномерами
Математическая обработка включает два вида работ: вычислительную и графическую (построение профиля).
15 марта 1919 г. был подписан декрет о создании Государственной картографо-геодезической службы – Высшего геодезического управления, реорганизованного впоследствии в Главное управление геодезии и картографии (ГУГК) при СМ СССР.
В конце 1920-х гг. Ф. Н. Красовский разработал программу развития ГГС. Созданная по этой программе единая астрономо-геодезическая сеть не имела аналогов в мировой практике по стройности построения и точности. В 1940 г. под руководством Ф. Н. Красовского и А. А. Изотова были вычислены новые размеры Земли, принятые для геодезических и картографических работ на территории СССР. Таким образом, была создана единая государственная опорная геодезическая сеть, частью которой является существующая государственная геодезическая сеть Республики Беларусь.
Начало геодезического образования в Беларуси относится к 1859 г., когда в Горе-Горецком земледельческом институте были открыты землемерно–таксаторские классы. В настоящее время подготовку специалистов осуществляют Борисовский политехникум – техников-топографов и Полоцкий политехнический университет, готовящий инженеров-геодезистов.
В настоящее время на всю территорию Республики Беларусь созданы топографические карты масштаба 1:10 000, а на территорию городов и городских поселков – топографические планы масштабов 1:5000 и 1:2000, в том числе, на застроенные территории городов – топопланы масштабов 1:1000 и 1: 500.
Все топографо-геодезические работы государственного значения выполняются производственными подразделениями «Белгеодезия», «Белаэрокосмогеодезия» и другими, входящими в структуру Комитета по земельным ресурсам, геодезии и картографии при Совете Министров Республики Беларусь.
1.3. Единицы мер в топографии и геодезии
Совокупность единиц физических величин, принятых в государстве для измерений называется системой мер.
При производстве геодезических измерений единицей угла служит градус, равный 1/360 части окружности или 1/90 части прямого угла (1º = 60΄, 1΄= 60΄΄). Пример: 11º 07´ 56´´.
Наряду с градусной системой мер в некоторых странах употребляется десятичная или децимальная система, в которой прямой угол делят на 100 частей, называемых градами. Град делится на 100 минут или сантиград, а минута – на 100 секунд. Пример: 46g 68s 98ss или 46,6898 g.
Значение угла может быть выражено в радианной мере. Радиан ρ – центральный угол, соответствующий длине дуге окружности, равной ее радиусу. Величина радиана – ρ = 57º 17΄ 44,8΄΄ или ρ ≈ 57,3; ρ΄ ≈ 3438; ρ΄΄ ≈ 206 265, где ρ, ρ΄, ρ΄΄ – число градусов, минут, секунд в радиане.
Единица длины – метр (м). За метр принята длина “архивного метра” платинового жезла, хранящегося в международном бюро мер и весов во Франции. Длина жезла была принята равной одной десятимиллионной части четверти Парижского меридиана. В 1889 г. была изготовлена 31 копия «архивного метра», две из которых были переданы в Россию. Для создания надежно воспроизводимого эталона метра в 1960 г. было решено выражать его через длину световых волн. В 1983 г. принято новое определение метра, согласно которому метр равен расстоянию, проходящему в вакууме плоской электромагнитной волной за 1/299 792 458 доли секунды. Кратные единицы метра –1 км = 1000 м; 1 дм = 0,1 м; 1 см = 0,01 м и 1мм = 0,001 м.
Единица площади – квадратный метр (м2). Кратные единицы – 1км2 = 1 000 000 м2 ; 1 см2 = 0,0001 м2 ; 10 000 м2 = 1 га; 1 км2 = 100 га.
Единица времени – секунда (s). Секунда равна 9 192 631 770 периодам излучения, соответствующего перехода между двумя сверхтонкими уровнями основного состояния атома Цезия-133. 1m(мин) = 60s; 1h (час) = 3600 s.
Единица температуры – градус по шкале Цельсия (С).
Единицей массы служит килограмм (кг). Копия представляет платиново-иридиевую гирю – цилиндр диаметром и высотой 39 мм.
Единица силы – ньютон (Н). 1Н равен силе, сообщающей телу массой 1кг ускорение 1 м/сек2 в направлении действия силы.
Единицей измерения давления служит паскаль (Па). Паскаль равен давлению, вызываемому силой 1Н равномерно распределенной по нормальной к ней поверхности площадью 1м2. 1 Па = 9,87× 10 –6 атм. или 7,60 × 10–3мм.рт.ст. Давление, равное 1013 г Па на уровне моря на широте 45 принято считать нормальным.
2. ОБЩИЕ СВЕДЕНИЯ
2.1. Форма и размеры Земли
Физическая поверхность Земли представляет собой сочетание бесконечно большого числа неровностей. Она состоит из океанов, морей и материков с островами. Поверхность океанов в их спокойном состоянии ровная, а суша, составляющая только 29 % от общей площади Земли, представляет собой сложные сочетания гор, возвышенностей, равнин и низменностей. Поэтому поверхность Земли не имеет математического выражения, хотя для решения задач науки и практики требуется знать пространственное положение ее точек. Устанавливать их удобно относительно вспомогательной поверхности, близкой к реальной (физической) поверхности Земли. Такую поверхность называют поверхностью относимости, за которую принимается основная уровенная поверхность Земли, в каждой точке которой нормаль совпадает с направлением отвесной линии (с направлением силы тяжести). Это поверхность воды океанов и открытых морей, находящаяся в спокойном состоянии и мысленно продолженная под материками так, что к ней отвесные линии перпендикулярны во всех точках на Земле. Выбор поверхности воды океанов и морей за уровенную поверхность Земли, объясняется тем, что поверхность открытых водных пространств занимает 71 % общей площади Земли.
В 1873 г. немецкий физик И. Б. Листинг назвал эту поверхность поверхностью геоида. Однако и фигура геоида сложна и строго неопределима, поскольку зависит от малоизученного распределения масс внутри Земли. Поэтому поверхность геоида не соответствует поверхности ни одной правильной математической фигуры, что не позволяет проводить расчеты, связанные с обработкой геодезических измерений на земной поверхности.
По предложению ученого М. С. Молоденского вместо геоида в качестве промежуточной поверхности относимости используется квазигеоид, выполняющий роль «уровня моря». Положение его поверхности рассчитывается на основе гравиметрических измерений (см. 2.2). Поверхности квазигеоида и геоида совпадают с поверхностью Мирового океана и различаются по высоте на суше не более чем на 2,5 м.
Геоид и квазигеоид по форме близко подходят к правильной математической фигуре – эллипсоиду вращения. Поэтому в качестве основной уровенной поверхности при обработке геодезических измерений, выполняемых на земной поверхности принята поверхность эллипсоида вращения, представляющего собой фигуру, полученную в результате вращения эллипса вокруг его малой оси (земной) эллипсоид.
Угол между отвесной линией pq к поверхности геоида в данной точке и нормалью mn к поверхности эллипсоида называется уклонением отвесной линии (рис. 2.1). В среднем, значение составляет 3–4″, а в местах аномалий достигает десятков секунд.
Рис. 2.1
Земной эллипсоид характеризуется следующими основными элементами (рис. 2.2.): малой полуосью (полярный радиус) , которая совпадает с осью вращения Земли; большой полуосью (экваториальный радиус) , которая перпендикулярна оси вращения Земли и полярным сжатием .
Э лементы земного эллипсоида, рассчитан–ные Деламбром (1800), Бесселем (1841), Хейфордом (1909) и другими учеными неоди–наковы, так как вычислены по геодезическим измерениям разных по протяженности дуг ме–ридианов и параллелей.
З
Рис. 2.2
емной эллипсоид, принятый для
обработки геодезических измерений и
установления единой государственной
системы координат называется
референц-эллипсоидом.
На территории СССР пользовались эллипсоидом Ф. В. Бесселя до 1946 г. Однако этот эллипсоид был рассчитан в основном по данным Западной Европы. На Дальнем Востоке его поверхность сильно уклонялась от поверхности Земли.
Более точные результаты размеров земного эллипсоида были получены в 1940 г. Ф. Н. Красовским и А. А. Изотовым по результатам астрономо-геодезических работ, выполненных на территории СССР, Западной Европы и США. Размеры земного эллипсоида, получившего название «референц-эллипсоида Красовского», были приняты для геодезических и картографических работ на всей территории СССР. Отклонения поверхности референц-эллипсоида Красовского от поверхности геоида не превышают 150 м. Точкой ориентирования референц-эллипсоида Красовского является центр круглого зала Пулковской обсерватории, широта В0 и долгота L0 которого определены из астрономических наблюдений и приняты исходными, а поверхность эллипсоида совмещена со средним уровнем воды в Финском заливе и отмечена на Кронштадском футштоке.
В настоящее время основные геометрические параметры общеземного эллипсоида определяются более точными методами с использованием искусственных спутников Земли. Для сравнения в табл. 2.1 приведены размеры земного эллипсоида, определенные Бесселем, Красовским и в глобальной геоцентрической системе координат WGS – 84 (World Geodetic System 1984).
Таблица 2.1.
Размеры земного эллипсоида
Автор |
Годы |
Размеры земного эллипсоида |
||
а, м |
b, м |
|
||
Бессель |
1841 |
6 377 397 |
6 356 079 |
1:299,15 |
Красовский |
1940 |
6 378 245 |
6 356 863 |
1:298,3 |
WGS - 84 |
1984 |
6 378 137 |
6 356 752 |
1: 298,257 |
При картографических работах (составление карт мелких масштабов) Землю достаточно принимать за шар, объем которого равен объему земного сфероида. Исходя из размеров эллипсоида Красовского R = 6 371 110 м.
2.2. Методы определения формы и размеров Земли
Астрономо-геодезический метод. Определение формы и размеров Земли при помощи этого метода основано на использовании градусных измерений, суть которых сводится к определению линейной величины дуг меридианов и параллелей на разных широтах.
Первое известное в истории определение длины земного меридиана, выполненное в античное время в Египте принадлежит Эратосфену. По его определениям длина меридианной окружности, равнялась 39 500 км, то есть очень близко к действительной величине меридиана 40 009 км. Ряд допущений, сделанных Эратосфеном, и несовершенный метод линейных измерений (расстояние определялось по длине караванного пути, измеренное в египетских стадиях (1 стадия может быть приравнена к 157,5 м) привели к приближенным результатам. Однако значение выполненных работ заключается в том, что Эратосфен впервые применил геодезический метод определения размеров Земли и получил довольно удовлетворительные для того времени результаты.
Высокая точность измерения значительных по протяженности расстояний обеспечивается методом триангуляции, который был разработан в 1615 г. голландским ученым В. Снеллиусом. Триангуляция (от лат. triangulum – треугольник) – способ определения положения опорных геодезических пунктов А, В, С,… на местности путем построения сети примыкающих друг к другу треугольников, в которых измеряются все углы, а с помощью базиса аb определяется длина выходной стороны АВ в их ряду, длины же других сторон вычисляют по координатам этих пунктов (рис. 2.3).
Рис. 2.3
Триангуляция являлась основным способом создания опорной геодезической сети и градусных измерений до развития и становления космического метода. Триангуляционные работы по определению длины дуг меридианов и параллелей проводились учеными разных стран (см. п. 1.2 и 2.1).
Геофизический (гравиметрический) метод. Геофизика – это наука, изучающая физические свойства Земли в целом и процессы, происходящие в ее геосферах. Этот метод основан на измерении величин, характеризующих земное поле силы тяжести, и их распределение на поверхности Земли. Измерения потенциала силы тяжести, выполняемые на поверхности Земли, позволяют вычислять сжатие Земли с большей точностью, чем астрономо-геодезическим методом.
Преимуществом этого метода является то, что его можно использовать на акваториях морей и океанов, где возможности астрономо-геодезического метода ограничены. С именем французского ученого А. Клеро (1713–1765) связано применение гравиметрического метода. В 1743 г. предполагая, что Земля состоит из сфероидальных слоев с общим центром, плотность которых возрастает к центру, он получил формулу для вычисления ускорения силы тяжести в любой точке Земли:
,
где gφ ; gэ; gn– ускорение силы тяжести, соответственно, на определяемой широте φ, на экваторе и на полюсе. Если в имеющуюся формулу подставить числовые значения gэ и gn , полученные путем измерений, то формула примет вид: g φ = 978, 030 (1+ 0,005302 sin2 φ).
Развитие космического метода относится к периоду освоения космического пространства с помощью ИСЗ. Этот метод основан на наблюдениях за ИСЗ и определении координат в заданный момент времени. Выявление отклонений реальных орбит ИСЗ от предвычисленных, вызванных неравномерным распределением масс в земной коре, позволяет уточнить представление о гравитационном поле Земли, а, следовательно, о ее форме и размерах (см. п. 7.5).
2.3. Методы проецирования земной поверхности
Для составления топографических карт и планов точки земной поверхности проецируют на поверхность референц-эллипсоида или на плоскость. Проецирование на поверхность референц-эллипсоида выполняется вдоль отвесных линий. Четырехугольник аbcd, полученный проецированием на сферическую поверхность эллипсоида, называют горизонтальной проекцией четырехугольника ABCD местности (рис. 2.4).
Рис. 2.4 |
Рис. 2.5 |
Рис. 2.6 |
При проецировании небольших по площади участков местности, основную уровенную поверхность можно принимать за плоскость. В таком случае отвесные линии можно считать параллельными между собой и горизонтальная проекция практически преобразуется в ортогональную. Согласно рис. 2.5 отрезки ab, bc, cd,…являются ортогональными проекциями соответствующих линий AB, BC, CD,…, углы abc, bcd,…– ортогональными проекциями соответствующих углов ABC, BCD,…, а плоский многоугольник abcd – ортогональной проекцией пространственного многоугольника ABCD. Положение точек и линий местности АВ,ВС,… в ортогональной проекции определяется длинами горизонтальных проложений ab,bc,…и горизонтальными углами между ними.
Длина ортогональной проекции линии местности MN на горизон-тальную плоскость p называется горизонтальным проложением S этой линии (рис. 2.6) и вычисляется из прямоугольного треугольника MNC по формуле S = L×cos ν.
Угол ν между линией местности MN и ее ортогональной проекцией на горизонтальную плоскость S = mn, измеряют непосредственно и называют углом наклона линии. Ортогональные проекции линий на плоскость при ν ≠ 0 всегда меньше соответствующих им отрезков на физической поверхности Земли.
2.4. Размеры участков земной поверхности,
принимаемые за плоскость
Р ассмотрим, для каких по размерам участков местности можно применять ортогональное проецирование, т. е. при которых кривизна Земли может не учитываться в процессе создания карты или плана. На рис. 2.7 изображена часть поверхности Земли в виде дуги BCD радиуса R и ее проекция PQ на плоскость PCQ, где PC = CQ.
Д
Рис. 2.7
ля простоты рассуждений рассмотрим
правую половину изображения проекции.
Из рисунка видно, что с удалением от
точки С разница между длиной линии
на сферической поверхности CD = S1
и ее проекцией на плоскость CQ = S
возрастает, а расстояние OD
увеличивается на величину Dh,
характеризующую изменение высоты точки
местности. Проекция кривой уровенной
поверхности СD
на горизонтальную плоскость
CQ
приводит к получению разностей ΔS = CQ
–
CD и
Δh
= OQ
– OD,
которые возникают из-за влияния кривизны
при проецировании сферы на плоскость.