Файл: Курсовые работы Python.docx

ВУЗ: Не указан

Категория: Задание

Дисциплина: Программирование

Добавлен: 28.11.2018

Просмотров: 8367

Скачиваний: 76

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Указания исполнителю. Данная задача интересна тем, что для ее эффективного решения требуется употребить некоторые весьма развитые алгоритмы и структуры данных. Однако пусть не столь эффективную, но правильно работающую программу можно написать, используя простые алгоритмы и структуры, которые можно, когда программа заработает, постепенно заменять более изящными конструкциями. Одним из примеров служит вычисление медианы для чистки словаря. В качестве первого варианта можно просто выбрасывать гнезда словаря с частотами, меньшими средней. При этом среднюю частоту легко вычислить за один полный просмотр всех частот словаря. А после того как такая программа в целом заработает, можно уже для нахождения порога исключения строк подключить болте сложную программу расчета медианы.

Другим примером является выбор структуры словаря на этапах его создания и кодирования. Если гнезда словаря расположить в случайном порядке, то при проверках на совпадение необходимо проходить весь словарь. Однако при такой структуре появляющиеся новые гнезда добавляются просто в конец словаря. Небольшое усложнение могло бы заключаться в группировке гнезд словаря по их длинам. Тогда поиск мог бы осуществляться в направлении от самых длинных групп к коротким и прекращаться при первом же удачном сравнении. Если каждую группу еще и лексикографически упорядочить, то можно было бы воспользоваться вместо линейного поиска внутри группы двоичным поискам, экономя таким образом время. Но зато добавление в словарь новых гнезд становится в этом случае более сложным, так как для любого нового гнезда потребуется место, скорее всего, где-то в середине группы. Не исключено, что самой выгодной структурой для организации поиска окажется какая-либо разновидность дерева. Разыскиваемую цепочку словаря могла бы тогда составить последовательность букв по пути от корня дерева к его листьям, или, иначе говоря, в узлах некоего подобия двоичного дерева поиска могли бы располагаться соответствующие строки словаря. В то же время при составлении словаря деревья потребуют намного большей обработки, нежели описанные выше более простые структуры.


Развитие темы. В описанной модели имеются три области свободы: критерий укрупнения гнезд, критерий исключения низкочастотных гнезд словаря и система их кодирования. Рассматривая их по-порядку, начнем с критерия укрупнения гнезд. Для того чтобы могло произойти укрупнение гнезд, в нашем алгоритме требуется, чтобы частоты встречаемости каждого из двух последовательных гнезд превысили один и тот же крайний предел.

Можно, однако, для каждого гнезда иметь свой порог. В другом варианте может быть у одного гнезда постоянный порог, а у другого — порог, являющийся функцией средней частоты гнезд. Аналогично может варьироваться начальная частота укрупненного гнезда, причем при любом способе начальная частота задается большой исходя из условия повышения шансов на сохранение данного гнезда при чистке.


Точно так же может быть видоизменен образ действий при исключении гнезд словаря во время его чистки. Можно выбрасывать неизменную часть низкочастотных гнезд (используя медиану, устанавливающую эту часть равной половине). Можно исключать все гнезда с частотами, меньшими некоторой, кратной средней частоте. Или же можно вычеркивать все гнезда с частотами, меньшими заданной, и эту процедуру осуществлять до тех пор, пока словарь не будет достаточно вычищен. Сочетание различных способов укрупнения и чистки гнезд характеризуется особым показателем исключаемости. В некоторых вариантах оставляются цепочки, которые часто встречаются в одной части текста и реже в других; в иных случаях предпочтение отдается цепочкам, равномерно разбросанным по тексту. Какому показателю исключаемости отдать предпочтение, зависит от используемых особенностей как словаря, так и текста.

В алгоритме кодирования употребляются диграфы, начинающиеся с не используемых во входном тексте литер. Однако, если набор диграфов кончился, а словарь еще не доделан, можно использовать триграфы и т. д. Коль скоро частоты гнезд словаря известны, их можно употребить для организации взвешенного кодирования переменной длины. Этот способ будет дороже при декодировании (почему не при кодировании?), зато обеспечит даже более высокую степень сжатия текста.



Тема 10: Домашняя бухгалтерия

Кооперативы — довольно характерное явление в студенческой жизни. Иногда несколько студентов просто вместе платят за квартиру; порой они связаны друг с другом тесными и официальными общинными узами. Однако в любом случае им нужно вести и оплачивать счета. Немало общин распалось из-за денег, и, хотя более глубоких проблем ЭВМ решить не могут, честно вести расчеты они в состоянии.

Как правило, счета присылают в конце месяца, как раз после самой крупной траты — внесения платы за квартиру. В течение месяца каждый член группы платит за все из своего кармана. Пошел в магазин — плати за продукты, открыл дверь — плати разносчику газет, сел за руль — плати за бензин. При удачном стечении обстоятельств большинство членов группы заплатит примерно свою долю, но уж, конечно, точного соответствия не получится никогда.

Если расходы распределяются не поровну, расчет не сводится к простому делению. Обычно кто-нибудь не прочь платить побольше, но иметь еще одну комнату; тот, кто выходные проводит у родителей, платит за еду несколько меньше других и т. п. И разумеется, каждый может потратить деньги по своему усмотрению, например на междугородный телефонный разговор или пиво, что не будет фиксироваться в ежемесячном групповом расчете. Чтобы учесть отмеченные нами и подобные им обстоятельства, нужна устоявшаяся бухгалтерская система.


Тема. Напишите программу, обеспечивающую небольшую общину постатейно расписанными счетами. Исходные данные подразделяются на четыре части. Первая часть должна содержать фамилии тех, кто участвует в расходах в текущем месяце. Во второй части перечисляются основные статьи расходов, такие, как питание, квартплата, коммунальные услуги. За каждой статьей должен следовать список членов общины и их доли в общих расходах. Доля может выражаться как в долларах, так и в процентах. Если вся статья распределена явным образом, то остаток делится поровну между остальными членами. Например, если квартплата составляет 200 долл., студент А взялся платить 45 долл., а В — 35%, то на всех остальных членов общины приходятся равные доли от 85 долл.

Элементами третьей части исходных данных должны быть записи об общественно полезных расходах. Запись содержит дату, фамилию члена группы, уплаченную сумму, статью расхода и краткое описание. Четвертая часть содержит сходную информацию, но о расходах на личные нужды. Каждая запись в этой части имеет ту же структуру, что и в части 3, с очевидным дополнением — указывается фамилия человека, на нужды которого истрачены деньги. Исходные данные необходимо проверить на непротиворечивость, обращая особое внимание на даты, размеры платежей, фамилии и статьи расходов.

Выходная информация также должна подразделяться на несколько частей. Во-первых, каждому члену группы нужно предоставить хронологический список всех платежей и приходов в данном месяце. Во-вторых, каждый должен получить такой же список, упорядоченный по статьям и датам. В этом списке необходимо указать долговые обязательства каждого члена по каждой статье и их разложение на пай и приход. Наконец, все должны узнать свое финансовое положение на конец месяца. Должники пусть знают, кому платить, а те, кому задолжали, пусть знают, с кого требовать деньги. Желательно, чтобы программа по возможности минимизировала число таких балансовых действий.


Заключительная часть вывода должна включать хронологический перечень всех расходов на общественные нужды и таблицу (люди/статьи), в которой приведены расходы, приходы, паи и сбалансированные долговые обязательства. Перекрестное суммирование таблицы позволит оценить точность бухгалтерии.


Указания исполнителю. Ничего особо сложного в предложенной задаче нет. Конечно, эффективная программа всегда лучше неэффективной, но в данном случае время счета мало по сравнению с временем ввода/вывода. Основного внимания требуют разнообразный формат исходных данных к элегантная организация проверки данных на непротиворечивость. А в общем это прозаическая программа, как и большинство производственных программ. Дайте «профессиональное» решение.



Тема 11: Моделирование машины Тьюринга

Задолго до появления первых универсальных цифровых вычислительных машин вопрос об ограничениях на вычисления, которые могли бы выполнять машины, заинтересовал Алана Тьюринга. Чтобы быть уверенным, что мощь его гипотетической машины не обусловлена каким-либо хитрым механизмом, Тьюринг исключил почти все возможности, которые существенны для реальных компьютеров. Осталась лишь программная память простого вида, не допускающая изменений во время выполнения, только один тип команд и простая лента для ввода и вывода. Тем не менее это устройство — машина Тьюринга, предмет обожания студентов-логиков в последние 40 лет — способно повторить все вычисления любого современного цифрового компьютера. Но какой мерзкой была бы задача промоделировать, скажем, IBM 370/155 на машине Тьюринга! К счастью, перед нами стоит куда более приятная обратная задача.

Машина Тьюринга состоит из устройства управления, которое с помощью головки связано с лентой ввода/вывода. Лента — это длинная полоска, разделенная на ячейки, каждая из которых может содержать одну литеру; лента простирается вправо до бесконечности (иными словами, на правом конце ленты находится небольшая фабрика, производящая по мере необходимости дополнительную ленту). Головка указывает на какую-то одну ячейку ленты и может читать содержимое ячейки, записывать и перемещаться вправо или влево. В начале работы исходные данные всегда заполняют левую часть ленты, а головка читает самую левую ячейку ленты. Когда головка, двигаясь вправо, достигает ячейки, которая не является частью исходных данных и никогда ранее не обозревалась головкой, считается, что в этой ячейке записан пробел, обозначаемый ø.

Устройство управления выполняет программу, подчиняясь строгим правилам. В любой момент времени устройство управления находится в некотором состоянии, которое записано в регистре текущее состояние. Состояния обозначаются положительными целыми числами. Каждая команда программы представляет собой пятерку, составленную из состояния, литеры, еще одного состояния, еще одной литеры и направления движения ленты. Цикл выполнения команды начинается с того, что устройство управления сравнивает текущее состояние и литеру на ленте под головкой с первыми двумя компонентами всех команд. По правилам программирования для машины Тьюринга в программе может быть не более одной пятерки с какой-либо определенной начальной парой состояние-литера (но может и не быть ни одной). Когда совпадение найдено, устройство управления выполняет три действия: в ячейку ленты под головкой записывается литера, являющаяся четвертой компонентой пятерки; головка передвигается на одну ячейку влево или вправо или остается на месте, как указано в пятой компоненте пятерки; текущее состояние заменяется на третью компоненту. После этого машина готова к следующему циклу. По соглашению, работа начинается в состоянии 1 при описанном выше состоянии ленты. Машина останавливается, если в цикле выполнения не удается найти совпадения с текущей парой состояние-литера или если головка выходит за левый край ленты; при этом результатом работы считается все, что остается на ленте после остановки. Отметим, что программа может содержать лишь конечное число команд, так что для любой программы осмысленно только конечное число состояний и литер.