Файл: Ю. Н. Толстова измерение в социологии курс лекций.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 26.10.2023

Просмотров: 352

Скачиваний: 5

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Вспомним одно из основных положений теории вероятнос­тей. Независимость двух событий означает, что вероятность на­ступления обоих событий вместе равна произведению вероят­ностей наступления каждого из них в отдельности. Учитывая это, нетрудно видеть, что в нашем случае независимость двух при­знаков с номерами i и j означает, что
Pt=P,Pj- (?-2>

Однако в действительности, если предположить, что признаки упорядочены в нашем смысле (и / < j), то окажется, что р.= = pi(для нашего примера со шкалой Богардуса — вероятность того, что респондент согласен допустить рассматриваемого чело­века одновременно и в качестве соседа, и в качестве сограждани­на, равна вероятности того, что он допустит этого человека в качестве соседа, поскольку второе требование само собой будет выполнено). Поскольку соотношение (7.2) не выполняется, то признаки зависимы.

Если же взять только тех людей, которые имеют одно и то же значение латентной переменной, то, как нетрудно проверить, для них однозначно восстанавливается картина их ответов на рассматриваемые вопросы: скажем, балл 5 респондент может иметь только в том случае, если он дал положительные ответы на пос­ледние 5 вопросов. Другими словами, респонденты с одним и тем же значением латентной переменной имеют одни и те же значения рассматриваемых признаков. Ни о какой связи тут го­ворить не приходится.

Гуттман предложил простой алгоритм, позволяющий либо привести матрицу к диагональному виду, либо показать, что это сделать в принципе невозможно. Прежде чем описать этот алгоритм, заметим, что мы должны учитывать еще одно обсто­ятельство.

Выше в действительности был описан некий идеальный слу­чай. Мы уже говорили, что в социологии практически никакая теоретическая схема никогда не проходит в совершенно "чис­том" виде, никакая гипотеза не может стопроцентно выпол­няться, никакие данные не бывают без ошибок. И всегда встает вопрос
, в каких пределах эти ошибки допустимы.

В нашем случае это означает, что даже при самом тщательном подборе суждений всегда найдутся респонденты, для которых они не будут упорядочены предполагаемым нами образом (в подтвер-" ждение того, что ошибки всегда будут, напомним, как уже мы говорили, что человек, ответивший положительно на третий воп­рос, почти наверняка, но не наверняка (!) даст положительный ответ на четвертый и пятый). То есть наша матрица хотя бы в малой мере, но практически всегда не будет точно диагональной. Необходимо, как всегда в подобных случаях, установить предел допустимых ошибок (напомним, что мы так же поступили, на­пример, когда говорили о возможных нарушениях транзитивно­сти в матрицах парных сравнений). В ситуации, когда этот предел не будет превышен, считать, что матрица диагональна, и, следо­вательно, наши условия, обеспечивающие возможность исполь­зования тестовой традиции, выполняются. Если ошибки превы-




сят допустимый предел, то будем полагать, что матрицу нельзя привести к диагональному виду и, стало быть, нельзя описан­ным образом измерять латентную переменную.

Ошибки будут проявляться в том, что даже в самом хорошем варианте у нас в области плюсов будут одиночные минусы, и наоборот. Оценим количество таких смешений. Их ниже мы и называем ошибками. Введем критерий:
R= 1 — (количество ошибок)/(количество клеток в таблице).
Будем полагать, что мы привели матрицу к диагональному виду, если R< 0,9. Теперь на примере покажем, в чем состоит алгоритм Гуттмана и как можно оценить качество его работы.

Итак, пусть исходная матрица данных имеет вид (табл. 7.4).

Таблица 7.4. Фрагментгипотетическойматрицыданных, полученныхспомощьюшкалыГуттмана

Респонденты

Суждения

Значение латентной переменной

1

2

со

4

5

6

1

+

-

-

-

+

+

3

см

+

+

+

-

-

-

со

со

-

-

-

-

-

-

0

4

+

+

+

+

+

-

5

СП

-

-

-

-

-

+

1

6

+

+

-

-

+

+

4

7

-

-

-

+

+

+

3

8

+

+

+

-

+

-

4



В соответствии с упомянутым алгоритмом сначала надо таким образом переставить строки, чтобы соответствующие им значе­ния измеряемой переменной расположились по убыванию (табл. 7.5).

Не зря мы ввели в таблицу еще одну строку. Теперь надо пере­ставить столбцы таблицы таким образом, чтобы возрастали ран­ги, стоящие в ее нижней, как бы маргинальной, строке (табл. 7.6).



Строго диагонального (ступенчато-диагонального) вида у нас не получилось. Теперь требуется оценить, можно ли все же счи­тать, что полученная матрица достаточно близка к диагонально­му виду.

R = I - (6 + 3)/ 48 = 0,81
(6 — количество плюсов, "заблудившихся" в минусовой облас­ти; 3 — количество минусов, находящихся в плюсовой области). Если такое значение критерия представляется неприемлемым (19% "неправильных" клеток в таблице), то приходим к выво­ду, что наша гипотеза о наличии латентной переменной, прояв­ляющейся в рассматриваемых наблюдаемых признаках, не верна.

Итак, наша работа начинается с того (имеется в виду этап ра­боты после предварительного формирования анкеты), что мы проводим пробное исследование, собираем данные и переставля­ем столбцы и строки полученной матрицы до тех пор, пока она либо приобретет диагональный вид, либо мы убедимся в том, что это сделать невозможно. В первом случае мы полагаем, что одномерная латентная переменная существует, признаки и спо­соб выражения через них латентной переменной выбраны удач­но, и переходим к основному исследованию. Во втором — вооб­ще говоря, отказываемся от построения одномерной шкалы. Од­нако в отдельных случаях исправить положение можно с помо­щью некоторой корректировки данных. Скажем, может оказать­ся, что привести матрицу к диагональному виду нам мешает ка­кой-то ее столбец. Тогда выбросим из рассмотрения соответ­ствующее суждение: оно не укладывается в наше упорядочение (может быть, не так понимается респондентами, как мы рассчи­тывали, и т.д.). Затем перейдем к основному исследованию. В при­веденном выше примере таким суждением можно считать шестое (правда, убрав его, мы уменьшим долю "неправильных" клеток не до 10%, а только до 12% (стало быть, Rбудет равно 0,88).

Может оказаться и так, что нам "мешает" строка матрицы, т.е. какой-то респондент. Можно отбросить и его и двигаться дальше. Но здесь надо быть осторожными, о чем мы уже говорили.

Перейдем к рассмотрению еще одного метода одномерного шкалирования — метода, предложенного Лазарсфельдом и пред­ставляющегося нам вершиной тестового подхода, поскольку здесь поставленные выше задачи решаются своеобразным и, на наш взгляд, более адекватным образом, чем при использовании дру­гих шкал. Объясняется это, вероятно, тем, что Лазарсфельд, будучи сторонником внедрения естественнонаучных методов в со­циологические исследования, взглянул на процесс построения шкалы с теоретико-вероятностной точки зрения, столь распрост­раненной в естественных науках.

7.6. Латентно-структурный анализ (ЛСА) Лазарсфельда

7.6.1. ПростейшийвариантЛСА: входивыход

Рассмотрим частный случай ЛСА — тот, который в свое вре­мя был предложен самим Лазарсфельдом. Перейдем к его описа­нию, подчеркнув, что тех ограничений, к перечислению кото­рых мы переходим, при настоящем состоянии техники ЛСА можно и не делать (о развитии ЛСА можно прочесть в [Гибсон, 1973; Дегтярев, 1981, Ι995; Лазарсфельд, 1966, 1973; Осипов, Андреев, 1977, с. 140—151; Статистические методы анализа..., 1979, с. 249—266; Типология и классификация..., 1982, с. 99— 111; Lazarsfeld, Henry, 1968]; о некоторых аспектах применения этого подхода в социологии см. также [Батыгин, 1990; Соци­альные исследования..., 1978, с. 15]).

В своих работах Лазарсфельд неоднократно упоминает о том, что его подход имеет самое непосредственное отношение к тео­рии тестов. Начнем описание ЛСА в соответствии со сформули­рованными выше принципами тестовой традиции.

Итак, мы предполагаем, что имеется совокупность респон­дентов, для которых существует одномерная латентная номи­нальная переменная с заданным числом градаций к. Пусть для определенности к = 2. Имеется анкета с N дихотомическими воп­росами. Предполагается, что вопросы подобраны таким обра­зом, что респонденты с разными значениями латентной пере­менной почти всегда по-разному будут отвечать на вопросы ан­кеты, а с одним и тем же значением — как правило, будут давать примерно одинаковые ответы. Предположим также, что за счет этого связь между наблюдаемыми переменными можно объяс­нить действием латент-ной переменной.

Приведем пример. Пусть наши респонденты — московские студенты, латентная переменная — их отношение к будущей специальности. Вопросы имеют примерно такой вид:

1) Часто ли Вы посещаете библиотеку (не реже раза в неде­лю)?

  1. Имеется ли у Вас домашняя библиотека из книг по специ­альности (не менее 10 книг)?

  2. Читали ли Вы когда-нибудь книгу по специальности по собственной инициативе, без рекомендации ее преподавателем?

  3. Были ли у Вас двойки на экзаменах?

  4. Случалось ли Вам, присутствуя на лекции, слушать плей­ер?

  5. Часто ли Вы пропускаете лекции (более трех лекций в неделю)?

Ясно, что студенты, мечтающие о работе по приобретаемой специальности, будут на первые три вопроса давать, как прави­ло, положительные ответы, а на последние три — отрицатель­ные. А для студентов, равнодушно или негативно относящихся к выбранной специальности, будет иметь место обратная картина.

Ясно также, что между рассматриваемыми наблюдаемыми пе­ременными будет иметься статистическая связь и что ее, всего ве­роятнее, можно будет объяснить действием латентной переменной. Это проявится в том, что при фиксации значения латентной пере­менной эта связь пропадет. Заметим, что это, уже неодно-кратно упоминаемое нами положение, Лазарсфельд первым четко сфор­мулировал и назвал аксиомой локальной независимости.

Исходной информацией для ЛСА служат частотные таблицы произвольной размерности (размерность таких таблиц зависит от заданного числа значений латентной переменной). Обозна­чим через р.вероятность положительного ответа наших рес­пондентов на /'-й вопрос (долю респондентов, давших такой от­вет); через р.. — вероятность положительных ответов одновре­менно и на /'-й, и на у'-й вопросы; через ρ к— вероятность поло­жительных ответов одновременно на г'-й,у'-й и к-й вопросы и т.д.

Те же буквы с индексом 1 наверху (р/, />..', ρ к')будут обозначать соответствующие частоты для первого латентного класса, с индек­сом 2 наверху (pf, ρ 2 , pjjk) — то же для второго латентного класса.

р.-квероятность положительного ответа на /-й и к-й вопро­сы и одновременно — отрицательного ответа на у'-й вопрос.

V, V2доли латентных классов в общей совокупности рес­пондентов.

Рассмотрим произвольный набор ответов на вопросы анке­ты, например, —I—К Через Ρ (1/+-Ι—ι-—Н) обозначим ве­роятность того, что респондент, давший набор ответов +н—\— + , попал в первый латентный класс, а через Ρ (2/+Η—I—Η) то же, для второго латентного класса.

Для описания исходных данных и результатов применения ЛСА прибегнем к "кибернетической" терминологии. Вход ЛСА.

Частоты любой размерности:p.,p..,pjjk.Другими словами, ЛСА работает с частотными таблицами. Это не может не привлекать социолога: метод может работать со шкалами любых типов.

Выход ЛСА.

а) Аналогичные частоты для каждого латентного класса. В на­шем случае с двумя латентными классами это будут частоты вида Р/>Р,/,Р„к'"Р/,Р/,Р1]к2-

Эти совокупности частот могут рассматриваться как описания латентных классов. Анализ таких описаний может послужить для уточнения представлений о той латентной переменной, существо­вание которой априори постулировалось, в частности, может при­вести исследователя к выводу о том, что ей следует дать другое название (ср. наши рассуждения о понятии "латентная перемен­ная" в п. 1.1). Подчеркнем, что такая возможность, с одной сторо­ны, выгодно отличает подход Лазарсфельда от остальных рассмот­ренных нами методов одномерного шкалирования (скажем, при использовании шкал Лайкерта или Терстоуна даже не ставится вопрос о том, что переменная может быть другой), а с другой, приближает к таким методам поиска латентных переменных, как факторный анализ и многомерное шкалирование (там проблема интерпретации осей одна из центральных). Представляется, что это характеризует ЛСА как более адекватный подход, чем другие методы одномерного шкалирования. В процессе использования пос­ледних мы фактически не считаем ту переменную, значения кото­рой ищем, латентной — мы знаем, что это за переменная, не умеем только ее измерять "в лоб". А в случае ЛСА мы допускаем' неадекватность наших априорных представлений о сути (названии) латентной переменной. И это, на наш взгляд, ближе к тем реаль­ным ситуациям, с которыми обычно имеет дело социолог.

Приведем пример. Положительные ответы на первые три при­веденных выше вопроса могут отражать не любовь к будущей специальности, а послушание "пай-девочек" интеллигентных ро­дителей, имеющих схожую специальность. Положительные же ответы на последние три вопроса — напротив, — самостоятель­ность сознательно выбравших будущую специальность молодых интеллектуалов, отрицающих необходимость для них прослу­шивания каких-то устаревших курсов, умеющих быстро навер­стать пропущенные занятия, позволяющих себе иногда "рассла­биться". Ясно, что в такой ситуации полное распределение отве­тов на все вопросы в найденных латентных классах может по­мочь исследователю скорректировать наименование латентной переменной.

Упомянем еще об одной возможной трактовке получаемых в результате применения ЛСА частотных распределений для каж­дого латентного класса. Каждое такое распределение можно ин­терпретировать как отражение той "плюралистичное™" мнений одного респондента, о которой мы говорили при обсуждении шкал Терстоуна. Можно считать, что это то самое распределе­ние, которое отвечает одному респонденту, попавшему в соот­ветствующий латентный класс (правда, как мы увидим ниже, ЛСА дает возможность судить лишь о вероятности такого попа­дания).

б) Относительные объемы классов. В нашем случае — V и V2.
Эта информация, помимо прочего, тоже может способствовать
корректировке представлений исследователя о латентной пере-
менной. Заметим (и это пригодится при решении приведенных
ниже уравнений), что V+V2= 1.

в) Вероятность Ρ (1/++-+-+) попадания объекта, давшего
набор ответов ++—I—Ь, в первый латентный класс и аналогичная
вероятность Ρ (2/++-+-+) — для второго латентного класса.

Это самое серьезное отличие ЛСА от других методов одно­мерного шкалирования. Представляется, что именно это отли­чие в наибольшей степени делает ЛСА более адекватным мето­дом, чем другие рассмотренные подходы к построению шкал. Способ измерения с помощью анкетных опросов по своей сути довольно "груб", в силу чего даже самые "благоприятные" отве­ты респондента не обязательно означают его включенность в соответствующий этим ответам латентный класс. Лазарсфельд действует более тонко: говорит только о вероятности такой вклю­ченности. Именно здесь проявляется в наибольшей степени же­лание Лазарсфельда следовать критериям, принятым в естествен­ных науках. Использование подобных вероятностных соотноше­ний в этих науках общепринято. Такой подход является есте­ственным и для самой математической статистики (социологу не мешает приглядываться к тому, что делают математики; иногда они вследствие профессиональной склонности к обобщениям предлагают более жизненные, хотя, может быть, и более слож­ные постановки задач, чем социолог).

7.6.2. МодельныепредположенияЛСА
Вернемся к не раз упомянутой выше "кибернетической" схе­ме, отражающей процесс производного измерения. Наши вход и выход связаны соотношением:



Итак, для того чтобы на базе данных величин (формирующих вход) получить искомые (выход), надо задать правила, выража­ющие вторые через первые (например, составить соответствую­щие уравнения). Каковы же соответствующие модельные пред­ставления? Сформулируем соотношения,'лежащие в основе ЛСА.

"Невооруженным" глазом видно, что количество неизвест­ных величин настолько превышает количество известных, что вряд ли в принципе возможно составление решаемых уравне­ний. Чтобы сократить количество неизвестных, вспомним акси­ому локальной независимости: фиксация значения латентной переменной приводит к исчезновению связи между наблюдае­мыми (это и означает, что латентная переменная объясняет свя­зи между наблюдаемыми).

Как мы уже говорили, независимость наших/-й и у'-й перемен­ных означает справедливость соотношения (7.2).

Ясно, что это равенство, вообще говоря, будет неверным, поскольку ответ на один вопрос (скажем, о том, имеет ли рес­пондент библиотеку) зависит от его ответа на другой вопрос (скажем, читает ли он по собственному желанию книги по буду­щей профессии). А вот для лиц, принадлежащих к одному латен­тному классу, в соответствии с аксиомой локальной независи­мости подобное соотношение будет справедливым:
Pj^P'p', P?=pfpf.

Нетрудно видеть, что использование этих соотношений по­зволяет резко сократить количество неизвестных: если мы най­дем р!и р.1,то величину pJможно будет не искать, поскольку ее легко выразить через первые две вероятности (относительные ча­стоты). То же можно сказать и о других многомерных частотах.

Для того чтобы понять, каким образом можно составить тре­бующиеся уравнения, вспомним формулу полной вероятности:



Подчеркнем, что, пользуясь приведенной формулой, мы тем самым предполагаем, что каждый респондент в какой-то класс обязательно попадает и не может попасть в два класса сразу. Это тоже содержательные соображения, принятие которых требует согласия с ними социолога. Первое утверждение означает, что искомая система классов является полной: мы считаем, что для каждого человека найдется в ней место. Второе утверждение за­ставляет нас избегать "расплывчатых" классификаций, что, од­нако, может быть не адекватно реальности. Этот недостаток по­крывается тем, что мы лишь указываем вероятность принадлеж­ности того или иного респондента к определенному классу, а не вычисляем точное значение латентной переменной для этого рес­пондента.

В системе (7.3) слева — известные величины, справа — неизве­стные. Ее можно решить. Мы не будем заниматься этим, отослав читателя к упомянутой в начале предыдущего параграфа литературе.

Осталось описать способ, с помощью которого рассчитыва­ются упомянутые вероятности. Этот способ опирается на так на­зываемую формулу Байеса: P(a/b) = (Р(а)Р(Ь/а))/Р (Ь). Здесь она превращается в



(Полагаем, что сказанное в настоящем параграфе лишний раз убедило читателя в том, что социологу необходимо знать эле­менты теории вероятностей).

В заключение обсудим, как же в случае ЛСА решаются сфор­мулированные нами в п. 7.3.3 проблемы построения индексов (искомая с помощью ЛСА латентная переменная тоже своеоб­разный индекс).

Первую проблему ЛСА не решает: существование латентной переменной в ЛСА постулируется. Правда, представление о ней может быть скорректировано за счет анализа полученных в про­цессе применения метода описаний каждого латентного класса (совокупности людей, имеющих одно и то же значение латент­ной переменной), т.е. вычисления вероятностных распределений ответов попавших в класс респондентов на все рассматриваемые вопросы.

Наши второй и третий вопросы снимаются следующим обра­зом. Точные значения латентной переменной для отдельных рес­пондентов не вычисляются. Вместо этого: а) дается описание каждого латентного класса и б) для каждого возможного набора ответов на вопросы анкеты вычисляется вероятность попадания давшего эти ответы респондента в любой из латентных классов.

Тип шкалы латентной переменной в ЛСА постулируется. В рас­смотренном простейшем варианте метода переменная была но­минальной. Как мы уже оговаривали, в более современных (но и гораздо более сложных) вариантах метода латентная переменная может быть получена по шкале любого типа, предусматривается также ее многомерность.

1   ...   4   5   6   7   8   9   10   11   ...   14

Глава 8. ПСИХОСЕМАНТИЧЕСКИЕ МЕТОДЫ В СОЦИОЛОГИИ

8.1. Содержание методов
Мы уже говорили о том, что социолог, желающий адекватно оценивать мнение респондента, должен "дружить" с психологией. Надеемся, что читатель убедился в этом при рассмотрении в пре­дыдущем разделе некоторых аспектов использования в социоло­гии тестового подхода. Перейдем к изучению еще одного способа осуществления опроса, опирающегося на достижения психологии.

Прежде всего о том, что такое психосемантика. Как известно, семантика — это "раздел языкознания и логики, в котором ис­следуются проблемы, связанные со смыслом, значением и ин­терпретацией знаков и знаковых выражений". [Быстрое, 1991, с. 275]. Психосемантика же изучает психологическое восприятие человеком значений и смыслов разного рода объектов (в том числе понятий, а также знаков и знаковых выражений), про­цесса интерпретации им этих объектов. В нее входят разные на­правления, в определенной мере отличные друг от друга и по решаемым задачам, и по подходам к их решению. Наряду с ме­тодом семантического дифференциала (СД), подробно рассмат­риваемым в п. 8.3, сюда можно отнести метод репертуарных ре­шеток [Дубицкая, Ионцева, 1997; Тарарухина, Ионцева, 1997; Толстова, 1997; Франселла, Баннистер, 1986] и некоторые дру­гие подходы [Баранова, Ι993-1994; Петренко, 1983, 1988; Ка-чанов, Шматко, 1993; Шмелев, 1983]). Одна из основных задач психосемантики — построение так называемого семантического пространства, т.е. нахождение системы тех латентных факторов, в рамках которых респондент "работает", так или иначе оцени­вая какие-либо объекты. Необходимо подчеркнуть, что респон­дент, как правило, не дает себе отчета в существовании этих факторов. Семантическое пространство по существу является ис­следовательской моделью структуры индивидуального сознания, на основе которой происходит восприятие респондентом объек­тов, их классификация, сравнение и т.д.

Иногда психосемантические методы относят к проективной технике. "Особенность проективных процедур в том, что стиму­лирующая ситуация приобретает смысл не в силу ее объектив­ного содержания, но по причинам, связанным с субъективны­ми наклонностями и влечениями испытуемого, т.е. вследствие субъективированного, личностного значения, придаваемого ситуации испытуемым. Испытуемый как бы проецирует свои свойства в ситуацию" [Ядов, 1995, с. 190].


Наряду с методом СД к проективной технике относят и дру­гие процедуры: метод незаконченных предложений, изучение разного рода ассоциаций респондентов по поводу заданного сти­мула и т.д. [Соколова, 1980; Ольшанский, 1994, с. 111 — 112; Ядов, 1995, с. 190-193].

Как отмечается в [Ядов, 1995, с. 193], "обоснованность проектив­ных процедур определяется прежде всего теоретическими посыл­ками, руководствуясь которыми исследователь истолковывает дан­ные". Сделаем некоторые предварительные замечания соответству­ющего плана, касающиеся основного интересующего нас в дан­ной работе психосемантического метода, — СД.

Метод СД направлен не только на поиск семантического про­странства и анализ лежащих в его основе факторов, но и на изу­чение взаимного расположения объектов в этом пространстве (т.е. различий в восприятии объектов рассматриваемым респонден­том). Для социолога круг задач, решаемых с помощью СД, более широк — его интересы требуют нахождения усредненных показа­телей соответствующего рода; выделение типов людей, обладаю­щих сходным восприятием рассматриваемых объектов.

По существу мы здесь имеем дело с одним из частных случаев той глобальной задачи, о которой говорили в первом разделе-(п. 3.2): метод СД позволяет с помощью жесткого формализован­ного опроса получить более или менее адекватную информацию о довольно тонких психологических структурах восприятия чело­веком окружающего мира. И снова для того, чтобы в нашем "бо­лее или менее" было больше "более", чем "менее", требуется тща­тельное отслеживание той модели, которая дает нам возможность соединить несоединимое. Это мы и намереваемся сделать ниже.

Основой той психологической теории, на которой базируется метод СД, служат понятия "значение" и "смысл". Этим поняти­ям, а также их различению уделяется огромное внимание в пси­хологической, психосемантической, психолингвистической ли­тературе [Дридзе, 1984; Леонтьев, 1974, 1983; Ольшанский, 1994;

Соколова, 1994]. Мы не будем их подробно рассматривать. Отме­тим только, что оба понятия отражают общественный опыт, ус­ваиваемый индивидом. Оба являются результатом определенной организации (классификации) сознанием человека того потока впечатлений, который последний получает от окружающего мира. Но первое отвечает коллективному опыту людей (так, ребенок присваивает готовые, исторически выработанные значения), а второе — опыту отдельного субъекта, это как бы внутренне мо­тивированное значение для субъекта. Первое в большей мере со­ответствует классификации когнитивного характера (логике ума), а второе — аффективного (логике чувств). Однако структуры и значений, и смыслов сложны. В частности, в обеих можно выде­лить и когнитивный, и аффективный компоненты. Нас в основ­ном будет