ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 07.04.2021
Просмотров: 591
Скачиваний: 1
1
1
1
|
'
t
'
t
h
E
ɷɜ
.
(2.3)
Ɉɬɫɸɞɚ ɫɥɟɞɭɟɬ
,
ɱɬɨ ɷɧɟɪɝɟɬɢɱɟɫɤɢɣ ɭɪɨɜɟɧɶ ɷɥɟɤɬɪɨɧɚ ɩɪɢ ɨɛɪɚɡɨɜɚɧɢɢ
ɤɪɢɫɬɚɥɥɚ ɢɡ ɨɬɞɟɥɶɧɵɯ ɚɬɨɦɨɜ
ɪɚɫɳɟɩɥɹɟɬɫɹ ɜ ɷɧɟɪɝɟɬɢɱɟɫɤɭɸ ɡɨɧɭ
.
Ɋɚɫɳɟɩɥɟɧɢɸ ɜ ɡɨɧɭ ɩɨɞɜɟɪɠɟɧɵ ɢ ɧɨɪɦɚɥɶɧɵɟ
,
ɢ ɜɨɡɛɭɠɞɺɧɧɵɟ
ɷɧɟɪɝɟɬɢɱɟɫɤɢɟ ɭɪɨɜɧɢ
.
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ
,
ɜɦɟɫɬɨ ɫɢɫɬɟɦɵ ɞɢɫɤɪɟɬɧɵɯ ɭɪɨɜɧɟɣ
ɷɧɟɪɝɢɢ
,
ɤɨɬɨɪɵɦɢ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɨɬɞɟɥɶɧɵɣ ɚɬɨɦ
,
ɜ ɤɪɢɫɬɚɥɥɟ ɩɨɹɜɥɹɟɬɫɹ
ɫɢɫɬɟɦɚ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɡɨɧ
.
ɒɢɪɢɧɚ ɷɧɟɪɝɟɬɢɱɟɫɤɨɣ ɡɨɧɵ ɧɟ ɡɚɜɢɫɢɬ ɨɬ
ɪɚɡɦɟɪɨɜ ɤɪɢɫɬɚɥɥɚ
,
ɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɪɢɪɨɞɨɣ ɚɬɨɦɨɜ
,
ɨɛɪɚɡɭɸɳɢɯ ɤɪɢɫɬɚɥɥ
,
ɢ ɫɬɪɨɟɧɢɟɦ ɤɪɢɫɬɚɥɥɚ
(
ɦɟɠɚɬɨɦɧɵɦɢ ɪɚɫɫɬɨɹɧɢɹɦɢ ɜ ɧɟɦ
).
ɒɢɪɢɧɚ
ɷɧɟɪɝɟɬɢɱɟɫɤɨɣ ɡɨɧɵ ɜ ɨɞɧɨɦ ɢ ɬɨɦ ɠɟ ɤɪɢɫɬɚɥɥɟ ɪɚɡɥɢɱɧɚ ɜ ɪɚɡɥɢɱɧɵɯ
ɧɚɩɪɚɜɥɟɧɢɹɯ
,
ɩɨɫɤɨɥɶɤɭ ɪɚɡɥɢɱɧɵ ɦɟɠɚɬɨɦɧɵɟ ɪɚɫɫɬɨɹɧɢɹ
.
ɗɧɟɪɝɟɬɢɱɟɫɤɚɹ ɡɨɧɚ ɧɟ ɹɜɥɹɟɬɫɹ ɧɟɩɪɟɪɵɜɧɵɦ ɪɹɞɨɦ ɡɧɚɱɟɧɢɣ ɷɧɟɪɝɢɢ
ɷɥɟɤɬɪɨɧɚ
,
ɚ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɫɢɫɬɟɦɭ ɞɢɫɤɪɟɬɧɵɯ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ
ɭɪɨɜɧɟɣ
.
ɑɢɫɥɨ ɭɪɨɜɧɟɣ ɜ ɷɧɟɪɝɟɬɢɱɟɫɤɨɣ ɡɨɧɟ ɤɪɢɫɬɚɥɥɚ ɨɩɪɟɞɟɥɹɟɬɫɹ
ɩɪɨɢɡɜɟɞɟɧɢɟɦ
ɱɢɫɥɚ
ɚɬɨɦɨɜ
ɜ
ɤɪɢɫɬɚɥɥɟ
ɧɚ
ɤɪɚɬɧɨɫɬɶ
ɚɬɨɦɧɨɝɨ
ɷɧɟɪɝɟɬɢɱɟɫɤɨɝɨ ɭɪɨɜɧɹ
,
ɢɡ ɤɨɬɨɪɨɝɨ ɨɛɪɚɡɨɜɚɥɚɫɶ ɡɨɧɚ
.
ɉɨɞ ɤɪɚɬɧɨɫɬɶɸ
ɚɬɨɦɧɨɝɨ ɷɧɟɪɝɟɬɢɱɟɫɤɨɝɨ ɭɪɨɜɧɹ ɩɨɞɪɚɡɭɦɟɜɚɟɬɫɹ ɱɢɫɥɨ ɷɥɟɤɬɪɨɧɨɜ
,
ɤɨɬɨɪɵɟ ɦɨɝɭɬ ɧɚɯɨɞɢɬɶɫɹ ɧɚ ɷɬɨɦ ɭɪɨɜɧɟ ɫ ɫɨɛɥɸɞɟɧɢɟɦ ɩɪɢɧɰɢɩɚ ɉɚɭɥɢ
.
Ⱦɥɹ ɢɡɨɛɪɚɠɟɧɢɹ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɡɨɧ ɤɪɢɫɬɚɥɥɚ ɩɨɥɶɡɭɸɬɫɹ ɨɛɵɱɧɨ
ɭɩɪɨɳɟɧɧɨɣ ɷɧɟɪɝɟɬɢɱɟɫɤɨɣ ɫɯɟɦɨɣ
(
ɪɢɫ
. 8).
Ɍɚɤ ɤɚɤ ɦɧɨɝɢɟ ɩɪɨɰɟɫɫɵ ɜ
ɤɪɢɫɬɚɥɥɟ
(
ɷɥɟɤɬɪɢɱɟɫɤɢɟ
,
ɦɚɝɧɢɬɧɵɟ
,
ɨɩɬɢɱɟɫɤɢɟ
)
ɨɛɴɹɫɧɹɸɬɫɹ
ɫɨɫɬɨɹɧɢɟɦ
ɜɚɥɟɧɬɧɵɯ
ɷɥɟɤɬɪɨɧɨɜ
,
ɬɨ
ɧɚ
ɫɯɟɦɟ
ɢɡɨɛɪɚɠɚɸɬ
ɬɨɥɶɤɨ
ɞɜɟ
ɪɚɡɪɟɲɟɧɧɵɯ
ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɡɨɧɵ
:
ɜɚɥɟɧɬɧɭɸ ɡɨɧɭ
,
ɫɨɨɬɜɟɬɫɬɜɭɸɳɭɸ
ɧɨɪɦɚɥɶɧɵɦ
(
ɧɟɜɨɡɛɭɠɞɟɧɧɵɦ
)
ɫɨɫɬɨɹɧɢɹɦ ɜɚɥɟɧɬɧɵɯ
ɷɥɟɤɬɪɨɧɨɜ
,
ɢ ɛɥɢɠɚɣɲɭɸ ɤ ɧɟɣ ɡɨɧɭ
ɜɨɡɛɭɠɞɟɧɧɵɯ ɫ ɫɬɨɹɧɢɣ ɷɬ ɯ ɷɥɟɤɬɪɨɧɨɜ
–
ɨ
ɢ
ɜɨɡɛɭɠɞɟɧɧɭɸ
ɡɨɧɭ
,
ɢɥɢ
ɡɨɧɭ
ɩɪɨ
-
ɜɨɞɢɦɨɫɬɢ
.
ɇɚɡɵɜɚɟɬɫɹ ɷɬɚ ɡɨɧɚ ɡɨɧɨɣ
ɩɪɨɜɨɞɢɦɨɫɬɢ ɩɨɬɨɦɭ
,
ɱɬɨ ɜ ɨɬɫɭɬɫɬɜɢɟ
ɜɧɟɲɧɢɯ ɜɨɡɛɭɠɞɟɧɢɣ ɜ ɧɟɣ ɧɟɬ ɷɥɟɤɬ
-
ɪɨɧɨɜ
,
ɚ ɤɨɝɞɚ
,
ɩɨɥɭɱɢɜ ɢɡɜɧɟ ɧɟɨɛɯɨɞɢ
-
ɦɭɸ ɷɧɟɪɝɢɸ ɜ ɷɬɭ ɡɨɧɭ ɩɟɪɟɣɞɟɬ ɷɥɟɤɬɪɨɧ
,
ɬɨ ɫɦɨɠɟɬ ɜ ɷɬɨɣ ɡɨɧɟ ɫɜɨɛɨɞɧɨ ɢɡɦɟɧɹɬɶ ɫɜɨɸ ɷɧɟɪɝɢɸ
,
ɞɜɢɝɚɬɶɫɹ ɩɨɞ
ɞɟɣɫɬɜɢɟɦ ɜɧɟɲɧɟɝɨ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ
,
ɬ
.
ɟ
.
ɭɱɚɫɬɜɨɜɚɬɶ ɜ ɩɪɨɜɨɞɢɦɨɫɬɢ
.
Ɋɢɫ
. 8.
ɍɩɪɨɳɟɧɧɚɹ ɫɯɟɦɚ
ɨɛɪɚɡɨɜɚɧɢɹ ɷɧɟɪɝɟɬɢɱɟɫɤɨɣ
ɡɨɧɵ
16
2.2.
ɉɪɨɜɨɞɧɢɤɢ
,
ɢɡɨɥɹɬɨɪɵ ɢ ɩɨɥɭɩɪɨɜɨɞɧɢɤɢ
Ɂɨɧɧɚɹ ɬɟɨɪɢɹ ɨɛɴɹɫɧɹɟɬ ɞɟɥɟɧɢɟ ɜɟɳɟɫɬɜ ɧɚ ɩɪɨɜɨɞɧɢɤɢ
,
ɩɨɥɭ
-
ɩɪɨɜɨɞɧɢɤɢ ɢ ɢɡɨɥɹɬɨɪɵ ɩɪɟɠɞɟ ɜɫɟɝɨ ɡɚɩɨɥɧɟɧɢɟɦ ɜɚɥɟɧɬɧɨɣ ɡɨɧɵ
ɤɪɢɫɬɚɥɥɚ ɷɥɟɤɬɪɨɧɚɦɢ
.
ȿɫɥɢ ɜɚɥɟɧɬɧɚɹ ɡɨɧɚ ɤɪɢɫɬɚɥɥɚ
ɡɚɩɨɥɧɟɧɚ ɧɟ
ɩɨɥɧɨɫɬɶɸ
,
ɬɨ ɤɪɢɫɬɚɥɥ ɹɜɥɹɟɬɫɹ ɩɪɨɜɨɞɧɢɤɨɦ
.
Ɋɚɫɫɦɨɬɪɢɦ
,
ɤɚɤ ɨɛɪɚɡɭɸɬɫɹ ɷɧɟɪɝɟɬɢɱɟɫɤɢɟ ɡɨɧɵ ɜ ɤɪɢɫɬɚɥɥɚɯ
ɧɟɤɨɬɨɪɵɯ ɯɢɦɢɱɟɫɤɢɯ ɷɥɟɦɟɧɬɨɜ
,
ɢ ɤɚɤ ɷɬɢ ɡɨɧɵ ɡɚɩɨɥɧɹɸɬɫɹ ɷɥɟɤɬɪɨɧɚɦɢ
.
ɇɚɱɧɟɦ
ɫ
ɤɪɢɫɬɚɥɥɚ ɥɢɬɢɹ
(
ɷɥɟɦɟɧɬɚ
I
ɝɪɭɩɩɵ ɉɟɪɢɨɞɢɱɟɫɤɨɣ ɫɢɫɬɟɦɵ ɷɥɟ
-
ɦɟɧɬɨɜ Ⱦ
.
ɂ
.
Ɇɟɧɞɟɥɟɟɜɚ
).
ȼ ɚɬɨɦɟ ɥɢɬɢɹ ɜ ɧɨɪɦɚɥɶɧɨɦ ɫɨɫɬɨɹɧɢɢ ɞɜɚ
ɷɥɟɤɬɪɨɧɚ ɧɚɯɨɞɹɬɫɹ ɧɚ ɭɪɨɜɧɟ
1s
ɢ ɨɞɢɧ ɷɥɟɤɬɪɨɧ
(
ɜɚɥɟɧɬɧɵɣ
) –
ɧɚ ɭɪɨɜɧɟ
2s.
ɉɪɢ ɨɛɪɚɡɨɜɚɧɢɢ ɤɪɢɫɬɚɥɥɚ ɥɢɬɢɹ ɩɪɨɢɫɯɨɞɢɬ ɪɚɫɲɢɪɟɧɢɟ ɢ ɪɚɫɳɟɩɥɟɧɢɟ
ɨɛɨɢɯ ɭɪɨɜɧɟɣ ɜ ɡɨɧɵ
.
ɇɚ ɪɢɫ
. 9
ɫɩɪɚɜɚ ɢɡɨɛɪɚɠɟɧɵ ɷɧɟɪɝɟɬɢɱɟɫɤɢɟ
ɫɨɫɬɨɹɧɢɹ ɚɬɨɦɚ ɥɢɬɢɹ
,
ɜ ɫɟɪɟɞɢɧɟ ɩɨɤɚɡɚɧɨ ɪɚɫɳɟɩɥɟɧɢɟ ɷɬɢɯ ɭɪɨɜɧɟɣ ɜ ɡɚɜɢɫɢ
-
ɦɨɫɬɢ ɨɬ ɪɚɫɫɬɨɹɧɢɹ ɦɟɠɞɭ ɚɬɨɦɚɦɢ
d
(d
0
–
ɩɨɫɬɨɹɧɧɚɹ ɤɪɢɫɬɚɥɥɢɱɟɫɤɨɣ
ɪɟɲɟɬɤɢ ɥɢɬɢɹ
,
ɬ
.
ɟ
.
ɪɚɫɫɬɨɹɧɢɟ ɦɟɠɞɭ ɚɬɨɦɚɦɢ ɜ ɨɛɵɱɧɨɦ ɫɨɫɬɨɹɧɢɢ
)
ɢ
,
ɧɚɤɨɧɟɰ
,
ɫɥɟɜɚ
–
ɫɯɟɦɚ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɡɨɧ ɤɪɢɫɬɚɥɥɚ ɥɢɬɢɹ
.
Ɋɢɫ
. 9.
ɗɧɟɪɝɟɬɢɱɟɫɤɢɟ ɡɨɧɵ ɜ ɫɬɪɭɤɬɭɪɟ ɤɪɢɫɬɚɥɥɚ ɥɢɬɢɹ
Ʉɚɤɨɜɵ ɠɟ ɷɥɟɤɬɪɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɤɪɢɫɬɚɥɥɚ ɥɢɬɢɹ
? B 1s-
ɡɨɧɟ ɢɦɟɟɬɫɹ
N
ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɭɪɨɜɧɟɣ ɢ
2N
ɷɥɟɤɬɪɨɧɨɜ ɧɚ ɧɢɯ
,
ɬ
.
ɟ
.
ɜɫɟ ɭɪɨɜɧɢ ɷɬɨɣ ɡɨɧɵ
ɰɟɥɢɤɨɦ ɡɚɩɨɥɧɟɧɵ ɷɥɟɤɬɪɨɧɚɦɢ
.
ɗɥɟɤɬɪɨɧɵ ɷɬɨɣ ɡɨɧɵ ɧɟ ɦɨɝɭɬ ɭɱɚɫɬɜɨɜɚɬɶ
ɜ ɫɨɡɞɚɧɢɢ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɬɨɤɚ ɜ ɤɪɢɫɬɚɥɥɟ
.
ȼ
2s-
ɡɨɧɟ ɢɡ
N
ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ
ɭɪɨɜɧɟɣ ɡɚɩɨɥɧɟɧɚ ɩɨɥɨɜɢɧɚ
(N
ɷɥɟɤɬɪɨɧɨɜ ɩɨ ɞɜɚ ɧɚ ɤɚɠɞɨɦ ɭɪɨɜɧɟ
),
ɩɨɷɬɨɦɭ
ɜɧɟɲɧɟɟ ɩɨɥɟ ɦɨɠɟɬ ɢɡɦɟɧɢɬɶ ɫɨɫɬɨɹɧɢɟ ɷɥɟɤɬɪɨɧɨɜ ɷɬɨɣ ɡɨɧɵ
.
ɗɥɟɤɬɪɨɧɵ
2s-
ɡɨɧɵ ɩɪɢɧɢɦɚɸɬ ɭɱɚɫɬɢɟ ɜ ɷɥɟɤɬɪɨɩɪɨɜɨɞɧɨɫɬɢ ɢ ɩɨɷɬɨɦɭ ɥɢɬɢɣ ɹɜɥɹɟɬɫɹ
ɩɪɨɜɨɞɧɢɤɨɦ
(
ɦɟɬɚɥɥɨɦ
).
ɏɨɪɨɲɚɹ ɷɥɟɤɬɪɨɩɪɨɜɨɞɧɨɫɬɶ ɞɪɭɝɢɯ ɳɟɥɨɱɧɵɯ
ɦɟɬɚɥɥɨɜ
(Na,
Ʉ ɢ ɩɪ
.)
ɦɨɠɟɬ ɛɵɬɶ ɨɛɴɹɫɧɟɧɚ ɚɧɚɥɨɝɢɱɧɨ
.
17
Ɋɚɫɫɦɨɬɪɢɦ ɞɚɥɟɟ ɤɪɢɫɬɚɥɥ ɷɥɟɦɟɧɬɚ
II
ɝɪɭɩɩɵ ɩɟɪɢɨɞɢɱɟɫɤɨɣ
ɫɢɫɬɟɦɵ
,
ɧɚɩɪɢɦɟɪ
Be.
ȼ ɚɬɨɦɟ ɷɬɨɝɨ ɷɥɟɦɟɧɬɚ
2s-
ɫɨɫɬɨɹɧɢɹ ɡɚɧɹɬɵ ɞɜɭɦɹ
ɷɥɟɤɬɪɨɧɚɦɢ ɢ ɩɨɬɨɦɭ ɩɪɢ ɨɛɪɚɡɨɜɚɧɢɢ ɢɡ ɭɪɨɜɧɹ
2s
ɷɧɟɪɝɟɬɢɱɟɫɤɨɣ ɡɨɧɵ
ɩɨɫɥɟɞɧɹɹ ɨɤɚɡɵɜɚɟɬɫɹ ɰɟɥɢɤɨɦ ɡɚɩɨɥɧɟɧɧɨɣ
.
ɇɚɪɹɞɭ ɫ ɷɬɢɦ
2p-
ɫɨɫɬɨɹɧɢɹ
ɚɬɨɦɨɜ ɩɭɫɬɵ ɢ ɩɨɷɬɨɦɭ ɡɨɧɚ
2
ɪ ɫɜɨɛɨɞɧɚ
.
ɇɚ ɪɢɫ
. 10
ɢɡɨɛɪɚɠɟɧɚ ɫɯɟɦɚ
ɨɛɪɚɡɨɜɚɧɢɹ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɡɨɧ ɜ ɤɪɢɫɬɚɥɥɟ ɛɟɪɢɥɥɢɹ
.
Ɋɢɫ
. 10.
Ɉɛɪɚɡɨɜɚɧɢɟ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɡɨɧ ɭ ɛɟɪɢɥɥɢɹ
ɇɚ ɫɯɟɦɟ ɜɢɞɧɨ
,
ɱɬɨ ɰɟɥɢɤɨɦ ɡɚɩɨɥɧɟɧɧɚɹ ɡɨɧɚ
2s
ɩɟɪɟɤɪɵɜɚɟɬɫɹ ɫɨ
ɫɜɨɛɨɞɧɨɣ ɡɨɧɨɣ
2
ɪ
,
ɢ ɩɪɢ ɡɧɚɱɟɧɢɢ
d
ɪɚɜɧɨɦ
d
0
,
ɜ ɧɟɦ ɨɛɪɚɡɭɟɬɫɹ ɱɚɫɬɢɱɧɨ
ɡɚɩɨɥɧɟɧɧɚɹ ɡɨɧɚ
.
Ȼɥɚɝɨɞɚɪɹ ɷɬɨɦɭ ɤɪɢɫɬɚɥɥ ɛɟɪɢɥɥɢɹ ɩɪɨɜɨɞɢɬ ɷɥɟɤɬɪɢɱɟɫɤɢɣ
ɬɨɤ
.
ɇɚ ɪɢɫ
. 10
ɜɢɞɧɨ
,
ɱɬɨ ɟɫɥɢ ɛɵ ɩɨɫɬɨɹɧɧɚɹ ɪɟɲɟɬɤɚ ɛɟɪɢɥɥɢɹ ɛɵɥɚ ɛɵ ɪɚɜɧɚ
d',
ɬɨ ɩɟɪɟɤɪɵɬɢɹ ɡɨɧ ɧɟ ɩɪɨɢɡɨɲɥɨ ɛɵ
.
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ
,
ɧɟɫɦɨɬɪɹ ɧɚ ɬɨ
,
ɱɬɨ ɜɚɥɟɧɬɧɚɹ ɡɨɧɚ ɜ ɞɚɧɧɨɦ ɫɥɭɱɚɟ
ɨɤɚɡɵɜɚɟɬɫɹ ɩɨɥɧɨɫɬɶɸ ɡɚɩɨɥɧɟɧɚ
,
ɛɟɪɢɥɥɢɣ ɹɜɥɹɟɬɫɹ ɩɪɨɜɨɞɧɢɤɨɦ
.
ȼ ɷɬɨɦ
ɫɥɭɱɚɟ
ɨɛɴɟɞɢɧɟɧɧɚɹ ɡɨɧɚ ɨɤɚɡɵɜɚɟɬɫɹ ɡɚɩɨɥɧɟɧɧɨɣ ɧɟ ɩɨɥɧɨɫɬɶɸ
,
ɱɬɨ ɞɚɟɬ
ɜɨɡɦɨɠɧɨɫɬɶ ɩɪɨɜɨɞɢɬɶ ɷɥɟɤɬɪɢɱɟɫɤɢɣ ɬɨɤ
.
ȿɫɥɢ ɜ ɤɪɢɫɬɚɥɥɟ ɩɨɥɧɨɫɬɶɸ ɡɚɩɨɥɧɟɧɧɚɹ ɜɚɥɟɧɬɧɚɹ ɡɨɧɚ ɨɬɞɟɥɟɧɚ ɨɬ ɡɨɧɵ
ɩɪɨɜɨɞɢɦɨɫɬɢ ɡɚɩɪɟɳɟɧɧɨɣ ɡɨɧɨɣ
,
ɬɨ ɜ ɨɬɫɭɬɫɬɜɢɟ ɜɧɟɲɧɟɝɨ ɜɨɡɛɭɠɞɟɧɢɹ
(
ɧɚɝɪɟɜɚɧɢɟ
,
ɨɛɥɭɱɟɧɢɟ ɢ ɩɪɨɱɟɟ
)
ɤɪɢɫɬɚɥɥ ɧɟ ɷɥɟɤɬɪɨɩɪɨɜɨɞɟɧ
.
ɇɚ ɪɢɫ
. 11
ɢɡɨɛɪɚɠɟɧɚ ɫɯɟɦɚ ɨɛɪɚɡɨɜɚɧɢɹ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɡɨɧ ɜ ɤɪɢɫɬɚɥɥɟ
ɚɥɦɚɡɚ
,
ɤɨɬɨɪɵɣ
,
ɤɚɤ ɢɡɜɟɫɬɧɨ
,
ɫɨɫɬɨɢɬ ɢɡ ɚɬɨɦɨɜ ɭɝɥɟɪɨɞɚ
.
ȼ ɚɬɨɦɟ ɭɝɥɟɪɨɞɚ
ɱɟɬɵɪɟ ɜɚɥɟɧɬɧɵɯ ɷɥɟɤɬɪɨɧɚ ɪɚɫɩɪɟɞɟɥɹɸɬɫɹ ɩɨ ɞɜɚ ɧɚ ɤɚɠɞɨɦ ɢɡ ɭɪɨɜɧɟɣ
2s
ɢ
2
ɪ
(
ɧɚ ɭɪɨɜɧɟ
2
ɪ ɦɨɝɭɬ ɧɚɯɨɞɢɬɶɫɹ ɨɞɧɨɜɪɟɦɟɧɧɨ ɲɟɫɬɶ ɷɥɟɤɬɪɨɧɨɜ
,
ɫɨɫɬɨɹɧɢɹ
ɤɨɬɨɪɵɯ ɨɬɥɢɱɚɸɬɫɹ ɜɟɥɢɱɢɧɚɦɢ ɦɚɝɧɢɬɧɵɯ ɤɜɚɧɬɨɜɵɯ ɱɢɫɟɥ
).
ɉɪɢ ɫɛɥɢɠɟɧɢɢ
ɚɬɨɦɨɜ ɭɝɥɟɪɨɞɚ ɭɪɨɜɧɢ
2s
ɢ
2
ɪ ɫɧɚɱɚɥɚ ɪɚɫɳɟɩɥɹɸɬɫɹ ɧɚ ɞɜɟ
18
ɨɛɨɫɨɛɥɟɧɧɵɟ ɡɨɧɵ
(N
ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɭɪɨɜɧɟɣ ɜ
2s-
ɡɨɧɟ ɢ
3N
ɭɪɨɜɧɟɣ ɜ
2
ɪ
-
ɡɨɧɟ
),
ɧɨ ɩɪɢ ɪɚɫɫɬɨɹɧɢɹɯ ɦɟɠɞɭ ɚɬɨɦɚɦɢ
d (d
1
< d < d
2
)
ɡɨɧɵ ɫɥɢɜɚɸɬɫɹ
ɜ ɟɞɢɧɭɸ ɡɨɧɭ ɫ
4N
ɭɪɨɜɧɹɦɢ
,
ɧɚ ɤɨɬɨɪɵɯ ɦɨɝɭɬ ɪɚɡɦɟɫɬɢɬɶɫɹ
8N
ɷɥɟɤɬɪɨɧɨɜ
.
ɉɪɢ ɞɚɥɶɧɟɣɲɟɦ ɫɛɥɢɠɟɧɢɢ ɚɬɨɦɨɜ ɭɝɥɟɪɨɞɚ
(d < d
1
)
ɟɞɢɧɚɹ
ɷɧɟɪɝɟɬɢɱɟɫɤɚɹ ɡɨɧɚ ɪɚɫɳɟɩɥɹɟɬɫɹ ɩɚ ɞɜɟ ɡɨɧɵ
,
ɜ ɤɚɠɞɨɣ ɢɡ ɤɨɬɨɪɵɯ
ɢɦɟɟɬɫɹ ɩɨ
2N
ɭɪɨɜɧɟɣ
.
Ɋɢɫ
. 11.
ɗɧɟɪɝɟɬɢɱɟɫɤɢɟ ɡɨɧɵ ɜ ɤɪɢɫɬɚɥɥɟ ɚɥɦɚɡɚ
ȼɫɟ ɱɟɬɵɪɟ ɜɚɥɟɧɬɧɵɯ ɷɥɟɤɬɪɨɧɚ ɚɬɨɦɚ ɭɝɥɟɪɨɞɚ ɪɚɫɩɨɥɚɝɚɸɬɫɹ ɩɪɢ
ɷɬɨɦ ɜ ɧɢɠɧɟɣ ɡɨɧɟ
,
ɰɟɥɢɤɨɦ ɡɚɩɨɥɧɹɹ ɟɟ
,
ɚ ɜɟɪɯɧɹɹ ɡɨɧɚ ɨɫɬɚɟɬɫɹ
ɫɜɨɛɨɞɧɨɣ
.
ɗɬɢ ɡɨɧɵ ɪɚɡɞɟɥɟɧɵ ɡɚɩɪɟɳɟɧɧɨɣ ɡɨɧɨɣ
,
ɲɢɪɢɧɚ ɤɨɬɨɪɨɣ ǻȿ ɜ
ɤɪɢɫɬɚɥɥɟ ɚɥɦɚɡɚ ɪɚɜɧɚ
5,6
ɷɜ
.
Ⱥɥɦɚɡ ɹɜɥɹɟɬɫɹ ɯɨɪɨɲɢɦ ɢɡɨɥɹɬɨɪɨɦ
.
ɍɫɥɨɜɧɨ ɩɪɢɧɹɬɨ ɫɱɢɬɚɬɶ ɩɨɥɭɩɪɨɜɨɞɧɢɤɚɦɢ ɜɟɳɟɫɬɜɚ
,
ɲɢɪɢɧɚ
ɡɚɩɪɟɳɟɧɧɨɣ ɡɨɧɵ ɜ ɤɨɬɨɪɵɯ ɦɟɧɟɟ ɬɪɟɯ ɷɥɟɤɬɪɨɧɜɨɥɶɬ
.
ɂɡɨɥɹɬɨɪɚɦɢ
ɫɱɢɬɚɸɬ ɜɟɳɟɫɬɜɚ ɫ ɲɢɪɢɧɨɣ ɡɚɩɪɟɳɟɧɧɨɣ ɡɨɧɵ ɛɨɥɟɟ ɬɪɟɯ ɷɥɟɤɬɪɨɧɜɨɥɶɬ
.
Ⱥɧɚɥɨɝɢɱɧɚɹ ɤɚɪɬɢɧɚ ɨɛɪɚɡɨɜɚɧɢɹ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɡɨɧ ɧɚɛɥɸɞɚɟɬɫɹ ɜ
ɤɪɢɫɬɚɥɥɚɯ ɞɪɭɝɢɯ ɷɥɟɦɟɧɬɨɜ
IV
ɝɪɭɩɩɵ ɩɟɪɢɨɞɢɱɟɫɤɨɣ ɫɢɫɬɟɦɵ
ɷɥɟɦɟɧɬɨɜ
:
ɤɪɟɦɧɢɹ
,
ɝɟɪɦɚɧɢɹ
,
ɨɥɨɜɚ
(
ɫɟɪɨɝɨ
).
ɒɢɪɢɧɚ ɡɚɩɪɟɳɟɧɧɨɣ ɡɨɧɵ
:
ɭ ɤɪɟɦɧɢɹ
– 1,1
ɷɜ
,
ɭ ɝɟɪɦɚɧɢɹ
– 0,7
ɷɜ
,
ɭ ɫɟɪɨɝɨ ɨɥɨɜɚ
– 0,1
ɷɜ
.
ɗɬɢ
ɷɥɟɦɟɧɬɵ ɹɜɥɹɸɬɫɹ ɬɢɩɢɱɧɵɦɢ ɩɨɥɭɩɪɨɜɨɞɧɢɤɚɦɢ
.
ȼ ɤɚɱɟɫɬɜɟ ɩɪɢɦɟɪɚ ɨɛɪɚɡɨɜɚɧɢɹ ɢ ɡɚɩɨɥɧɟɧɢɹ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɡɨɧ
ɢɨɧɧɨɝɨ ɤɪɢɫɬɚɥɥɚ ɪɚɫɫɦɨɬɪɢɦ ɤɪɢɫɬɚɥɥ ɩɨɜɚɪɟɧɧɨɣ ɫɨɥɢ
(NaCl).
ɗɧɟɪɝɟɬɢɱɟɫɤɢɟ ɡɨɧɵ ɜ ɷɬɨɦ ɤɪɢɫɬɚɥɥɟ ɨɛɪɚɡɭɸɬɫɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɪɚɫɲɢɪɟɧɢɹ
ɢ ɪɚɫɳɟɩɥɟɧɢɹ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɭɪɨɜɧɟɣ ɢɨɧɨɜ
Na
+
ɢ ɋ
l
–
,
ɤɨɬɨɪɵɟ ɢɦɟɸɬ
ɡɚɩɨɥɧɟɧɧɵɟ ɷɥɟɤɬɪɨɧɧɵɟ ɨɛɨɥɨɱɤɢ ɬɢɩɚ ɨɛɨɥɨɱɟɤ ɚɬɨɦɨɜ ɢɧɟɪɬɧɵɯ ɝɚɡɨɜ
(
ɜ ɢɨɧɟ
Na
+
ɩɨɞɨɛɧɨ ɚɬɨɦɭ
Ne,
ɜ ɢɨɧɟ
Cl
–
ɩɨɞɨɛɧɨ ɚɬɨɦɭ Ⱥ
r).
19
Ɋɢɫ
. 12.
ɗɧɟɪɝɟɬɢɱɟɫɤɢɟ ɡɨɧɵ ɜ ɤɪɢɫɬɚɥɥɟ ɯɥɨɪɢɞɚ ɧɚɬɪɢɹ
ɇɚ ɪɢɫ
. 12
ɜɢɞɧɨ
,
ɱɬɨ ɜ ɪɚɡɞɟɥɟɧɧɵɯ ɚɬɨɦɚɯ
3s-
ɭɪɨɜɟɧɶ ɚɬɨɦɚ
Na
ɪɚɫɩɨɥɨɠɟɧ ɧɢɠɟ Ɂɪ
-
ɭɪɨɜɧɹ ɚɬɨɦɚ ɋ
1,
ɚ ɩɪɢ ɫɛɥɢɠɟɧɢɢ ɷɬɢɯ ɚɬɨɦɨɜ ɡɨɧɚ
3p
ɨɤɚɡɵɜɚɟɬɫɹ ɧɢɠɟ ɡɨɧɵ
3s.
Ɉɛɴɹɫɧɹɟɬɫɹ ɷɬɨ ɬɟɦ
,
ɱɬɨ ɜ ɤɪɢɫɬɚɥɥɟ
NaCl
ɤɚɠɞɵɣ ɢɨɧ ɋ
1
–
ɨɤɚɡɵɜɚɟɬɫɹ ɜ ɨɤɪɭɠɟɧɢɢ ɩɨɥɨɠɢɬɟɥɶɧɵɯ ɢɨɧɨɜ
Na
+
,
ɜɫɥɟɞɫɬɜɢɟ ɱɟɝɨ ɷɧɟɪɝɢɹ ɷɥɟɤɬɪɨɧɚ ɜ ɷɬɨɦ ɢɨɧɟ ɭɦɟɧɶɲɚɟɬɫɹ
,
ɜ ɬɨ ɠɟ ɜɪɟɦɹ
ɷɧɟɪɝɢɹ ɷɥɟɤɬɪɨɧɚ
,
ɩɪɢɧɚɞɥɟɠɚɳɟɝɨ ɢɨɧɭ
Na
+
,
ɢɡ
-
ɡɚ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɫ
ɨɤɪɭɠɚɸɳɢɦɢ ɢɨɧɚɦɢ ɋ
1
–
ɭɜɟɥɢɱɢɜɚɟɬɫɹ
.
ȼɚɥɟɧɬɧɵɟ
3s-
ɷɥɟɤɬɪɨɧɵ ɧɚɬɪɢɹ
ɩɟɪɟɯɨɞɢɬ ɜ ɡɨɧɭ
3
ɪ ɯɥɨɪɚ ɢ ɡɚɩɨɥɧɹɸɬ ɜ ɧɟɣ ɜɫɟ ɜɚɤɚɧɬɧɵɟ
ɷɧɟɪɝɟɬɢɱɟɫɤɢɟ ɭɪɨɜɧɢ
.
Ɂɨɧɚ
3p
ɯɥɨɪɚ ɜ
NaCl
ɩɨɥɧɨɫɬɶɸ ɡɚɩɨɥɧɟɧɚ
,
ɚ ɡɨɧɚ
3s
ɧɚɬɪɢɹ
–
ɫɜɨɛɨɞɧɚ
,
ɷɬɢ ɡɨɧɵ ɪɚɡɞɟɥɟɧɵ ɲɢɪɨɤɨɣ ɡɚɩɪɟɳɟɧɧɨɣ ɡɨɧɨɣ
(
ǻȿ
= 6
ɷɜ
),
ɢ ɤɪɢɫɬɚɥɥ
NaCl
ɧɟ ɷɥɟɤɬɪɨɩɪɨɜɨɞɟɧ
.
ɉɪɢ ɭɫɬɚɧɨɜɥɟɧɢɢ ɡɨɧɧɨɣ ɫɬɪɭɤɬɭɪɵ ɬɜɟɪɞɵɯ ɬɟɥ ɧɟɨɛɯɨɞɢɦɨ
ɜɧɢɦɚɬɟɥɶɧɨ ɪɚɫɫɦɚɬɪɢɜɚɬɶ ɯɚɪɚɤɬɟɪ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɦɟɠɞɭ ɱɚɫɬɢɰɚɦɢ
,
ɨɛɪɚɡɭɸɳɢɦɢ ɤɪɢɫɬɚɥɥ
.
ɇɚ ɩɟɪɜɵɣ ɜɡɝɥɹɞ ɦɨɠɟɬ
,
ɧɚɩɪɢɦɟɪ
,
ɩɨɤɚɡɚɬɶɫɹ
,
ɱɬɨ ɤɪɢɫɬɚɥɥ ɜɨɞɨɪɨɞɚ
,
ɩɨɞɨɛɧɨ ɤɪɢɫɬɚɥɥɚɦ
Li, Na,
Ʉ
,
ɞɨɥɠɟɧ ɛɵɬɶ
ɩɪɨɜɨɞɹɳɢɦ
.
ȼ ɞɟɣɫɬɜɢɬɟɥɶɧɨɫɬɢ ɜɨɞɨɪɨɞ ɜ ɬɜɟɪɞɨɦ ɫɨɫɬɨɹɧɢɢ ɧɟ
ɩɪɨɜɨɞɢɬ ɷɥɟɤɬɪɢɱɟɫɤɢɣ ɬɨɤ
.
Ɉɛɴɹɫɧɹɟɬɫɹ ɷɬɨ ɬɟɦ
,
ɱɬɨ ɤɪɢɫɬɚɥɥ ɜɨɞɨɪɨɞɚ
ɫɨɫɬɨɢɬ ɢɡ ɦɨɥɟɤɭɥ
(
ɇ
2
),
ɫɪɚɜɧɢɬɟɥɶɧɨ ɫɥɚɛɨ ɫɜɹɡɚɧɧɵɯ ɦɟɠɞɭ ɫɨɛɨɣ
,
ɫɥɟɞɨɜɚɬɟɥɶɧɨ
,
ɟɝɨ
ɷɧɟɪɝɟɬɢɱɟɫɤɢɟ
ɡɨɧɵ
ɦɚɥɨ
ɨɬɥɢɱɚɸɬɫɹ
ɨɬ
ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɭɪɨɜɧɟɣ ɦɨɥɟɤɭɥɵ
.
Ⱥ ɜ ɷɬɨɣ ɦɨɥɟɤɭɥɟ
,
ɤɚɤ ɢɡɜɟɫɬɧɨ
,
ɷɧɟɪɝɟɬɢɱɟɫɤɢɟ ɭɪɨɜɧɢ ɪɚɡɞɟɥɹɸɬɫɹ ɧɚ ɞɜɟ ɝɪɭɩɩɵ
,
ɷɧɟɪɝɟɬɢɱɟɫɤɢ ɞɚɥɟɤɨ
ɨɬɫɬɨɹɳɢɟ ɞɪɭɝ ɨɬ ɞɪɭɝɚ
.
ɗɥɟɤɬɪɨɧɵ ɪɚɡɦɟɳɚɸɬɫɹ ɧɚ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ
ɭɪɨɜɧɹɯ
ɧɢɠɧɟɣ
ɝɪɭɩɩɵ
.
ɋɨɨɬɜɟɬɫɬɜɟɧɧɨ
,
ɜ
ɤɪɢɫɬɚɥɥɟ
ɜɨɞɨɪɨɞɚ
ɨɤɚɡɵɜɚɟɬɫɹ ɰɟɥɢɤɨɦ ɡɚɩɨɥɧɟɧɧɨɣ ɧɢɠɧɹɹ ɡɨɧɚ ɢ ɫɜɨɛɨɞɧɨɣ ɜɟɪɯɧɹɹ
,
ɢ
ɩɨɬɨɦɭ ɜɨɞɨɪɨɞ ɜ ɬɜɟɪɞɨɦ ɫɨɫɬɨɹɧɢɢ ɹɜɥɹɟɬɫɹ ɢɡɨɥɹɬɨɪɨɦ
.
20