Файл: Лекции по теоретической метрологии.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.10.2023

Просмотров: 365

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Геометрические представления о размахе R результатов измерений можно получить с использованием точечной диаграммы результатов многократных измерений одной и той же физической величины, которая строится в координатной системе «значения, полученные при измерениях X – номер измерения N» в любом удобном масштабе.

В
Рекомендация начинающим: желающим более подробно рассмотреть анализ точечных диаграмм предлагается обратиться к соответствующему модулю.
оспроизводимость результатов измерений
(воспроизводимость измерений) – близость результатов измерений одной и той же величины, полученных в разных местах, разными методами, разными средствами, разными операторами, в разное время, но приведенных к одним и тем же условиям измерений (температуре, давлению, влажности и др.).

Воспроизводимость можно оценить, например, после выполнения нескольких серий многократных измерений одной и той же физической величины с использованием разных методик выполнения измерений. В качестве оценок воспроизводимости могут служить разности средних значений в сериях, разности средних квадратических отклонений в сериях, разности экстремальных результатов разных серий и другие оценки.

Единство измеренийсостояние измерений, характеризующееся тем, что их результаты выражаются в узаконенных единицах, размеры которых в установленных пределах равны размерам единиц, воспроизводимых первичными эталонами, а погрешности результатов измерений известны и с заданной вероятностью не выходят за установленные пределы.

В ГОСТ 16263-70 единство измерений трактовалось как состояние измерений, при котором их результаты выражены в узаконенных единицах и погрешности измерений известны с заданной вероятностью. Там же было определено единообразие средств измерений состояние средств измерений, характеризующееся тем, что они проградуированы в узаконенных единицах и их метрологические свойства соответствуют нормам. Кроме того, в том же стандарте было приведено определение правильности измерений, которая является существенной характеристикой их качества. Правильность измерений– качество измерений, отражающее близость к нулю систематических погрешностей в их результатах. В приведенном определении не различаются свойства измерений (процесса измерений, измерительной процедуры) и свойства результатов измерений, характеризующие их близость к истинному значению измеряемой физической величины.


Представим свойства, определяющие качество измерений (процесса измерений, измерительной процедуры) в виде иерархической структурной схемы, ограничившись для начала тремя уровнями. Для первого уровня схемы предлагается три блока свойств (рисунок 4.2): «техническая эффективность», «экономичность» и «безопасность». При построении структуры надо учитывать, что абсолютно независимых страт (классификационных групп) не бывает. Так техническое совершенство измерений, как и любого иного объекта, не может быть независимым от экономичности, а безопасность можно рассматривать в двойной связи (и с экономичностью, и с техническими свойствами).

Предложенное разделение свойств объектов основано на том, что проектирование любого процесса направлено на достижение определенной технической цели и только после получения положительного результата ставятся вопросы о снижении затрат и повышении безопасности (если последнее необходимо). Кроме того, экономические расчеты всегда отделяли от «технических», а что касается безопасности, она давно выделилась в некую особую сферу и даже обзавелась собственной системой стандартов.

На третьем иерархическом уровне комплексные свойства второго уровня могут быть разделены на менее сложные свойства. Техническая эффективность измерений может быль декомпонирована на точность и достоверность, экономичность измерений – на себестоимость и производительность, а безопасность – на безопасность оператора и безопасность окружения. Декомпозиция может быть продолжена для получения более простых свойств с конкретными наименованиями, входящих в вышестоящие группы свойств.



При анализе экономичности следует рассматривать проектирование МВИ, подготовку и проведение измерений, включая обработку результатов. При анализе безопасности обращают внимание на безопасность оператора, ближайшего и дальнего окружения (включая экологическую безопасность), причем необходимо учитывать как непосредственные опасные воздействия, так и отдаленные последствия в виде слабых, накапливающихся и/или отложенных неблагоприятных результатов.

В настоящее время нет общепринятых подходов к оценке качества измерений. Предложенные материалы (схема, свойства, рекомендации по декомпозиции) подлежат анализу и критике, дальнейшему развитию и совершенствованию, поскольку они не очень удобны для применения в конкретных метрологических ситуациях.



ПРИЛОЖЕНИЕ 4.А

Трактовки ИЗМЕРЕНИЯ в разных информационных источниках
В литературных источниках встречается множество определений, в которых весьма разнообразно истолковывается понятие измерения. Ниже приведены некоторые определения измерений, взятые из разных источников. Несущественные различия обусловлены наличием в определениях большей или меньшей детализации при единстве подходов к измерению как к экспериментальному процессу количественной оценки физической величины. Принципиальные различия возникают при попытках распространить понятие измерения на любые оцениваемые величины и свойства, в том числе и нефизические. Определения представлены для расширения кругозора и могут быть использованы для сравнительного анализа

Измерение физической величинысовокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины (РМГ 29 -99).

Измерение – нахождение значения физической величины опытным путем с помощью специальных технических средств (ГОСТ 16263 -70).

Определения не претендуют на слишком широкую область, они отнесены только к измерению физических величин.

Познавательный процесс, заключающийся в сравнении путем физического эксперимента данной величины с известной величиной, принятой за единицу сравнения» (Тюрин).

«Сравнение неизвестного размера с известным и выражение первого через второй в кратном или дольном отношении» (Шишкин, МСиУК).

«Получение информации о размере измеряемой величины» (Шишкин, ТМ).

«Информационный процесс получения опытным путем численного отношения между данной физической величиной и некоторым ее значением, принятым за единицу сравнения» (Алиев, Тер-Хачатуров).

«Приписывании--е различным проявлениям некоторого свойства материальных объектов определенных действительных чисел с целью его познания» (Котов).

«Акт познания, заключающийся в сравнении опытным путем данного размера величины с некоторым ее значением, принятым за единицу измерения, выполнении необходимых логических и вычислительных действий и представлении результата в числовой форме с указанием его точности» (Ехлаков, Маков).

«Совокупность операций по применению технического средства, хранящего единицу физической величины, заключающихся в сравнении (в явном или неявном виде) измеряемой величины с ее единицей с целью получения значения этой величины (или информации о нем) в форме, наиболее удобной для использования» (Юдин, Селиванов ОТвОМ).


«Получение числового эквивалента (значения) величины, характеризующей свойства физического объекта (предмета, процесса, явления), посредством эксперимента (опытным путем), основу которого составляет операция сравнения аналоговой величины с образцовой (значение меры), удовлетворяющего требованиям системы обеспечения единства измерений». (Определение "близко к приведенному в ГОСТ 16263-70 и ни в чем ему не противоречит" по мнению авторов Журавина, Мариненко, Семенова и Цветкова, под ред. Цветкова).

МОДУЛЬ 5. КЛАССИФИКАЦИЯ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ


Погрешность результата измерения (погрешность измерения) – отклонение результата измерения от истинного (действительного) значения измеряемой величины.

Формально погрешность можно представить выражением

= X – Q, (5.1)

где – абсолютная погрешность измерения;

X – результат измерения физической величины;

Q – истинное значение измеряемой физической величины (физическая величина, представленная ее истинным значением).

В РМГ 29 – 99 отмечается, что истинное значение величины всегда остается неизвестным (его применяют только в теоретических исследованиях) и на практике вместо него используют действительное значение величины хд в результате чего погрешность измерения Δxизм определяют по формуле

Δxизм = xизм хд (5.2)

где xизм — измеренное значение величины.

Во избежание недоразумений следует обратить внимание на недостаточную строгость выражения (5.2) и различия между идеализированным понятием «погрешность измерения» и возможностью ее оценки. Термин действительное значение физической величины (действительное значение величины, действительное значение) – значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него (РМГ 29 – 99) определенности выражения (2) не повышает, поскольку для разных задач действительные значения xизм могут существенно различаться. Так при арбитражной перепроверке результатов приемочного контроля деталей погрешности измерений должны быть значительно меньше, чем при самой разбраковке.

Нестандартным синонимом термина «погрешность измерения» является термин ошибка измерения, применять который не следует, поскольку использование нестандартных терминов взамен стандартных свидетельствует о недостаточной грамотности. Кроме того, с филологических позиций ошибка связана с нарушением процедуры измерений и должна быть устранена, в то время как погрешность является неустранимым атрибутом результата измерения.