Файл: Интеллектуальные информационные системы и технологии.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 386

Скачиваний: 11

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

УДК 004.89(075.8)

С применением

Без применения

Формирование

Приобретение

Извлечение

А1 <проверки нормальности распределения значений остатков>

Рис. 4.1. Обобщенная структура статической ЭС

Рис. 4.2. Обобщенная структура динамической ЭС

Глава 8. Хранилища данных и управление знаниями8.1. Хранилища данныхДля устранения разрозненности, разнотипности, противоречивости данных используется концепция «хранилище данных» (ХД). Под ХД понимают предметно-ориентированную, интегрированную, некорректи-руемую, зависимую от времени коллекцию данных, предназначенную для поддержки принятия управленческих решений. Хранилище данных должно предложить такую среду накопления данных, которая оптимизирована для выполнения сложных аналитических запросов управленческого персонала. Данные в хранилище не предназначены для модификации. Предметная ориентация означает, что данные объединены и хранятся в соответствии с теми областями, которые они описывают. Интегрированность подразумевает, что данные должны удовлетворять требованиям всего предприятия. Некорректируемость заключается в том, что данные не создаются в ХД, а поступают из внешних источников, не подвергаются изменениям и не удаляются. Данные в ХД должны быть согласованы во времени.При реализации ХД особое значение приобретают процессы извлечения, преобразования, анализа и представления. При извлечении данные приводятся к единому формату. Источники данных могут быть классифицированы по территориальному, административному признаку, степени достоверности, частоте обновляемости, количеству пользователей, секретности и используемым СУБД. Вся эта информация составляет основу словаря метаданных ХД, который призван обеспечить корректную периодическую актуализацию ХД.Инструментальные средства (ИС) реализующие аналитические методы обработки данных, классифицируются по способу представления данных. Выделяют ИС, хранящие данные:в реляционном виде, но имитирующие многоразмерность для пользователя;в многоразмерных базах;как в реляционном виде, так и в многоразмерных базах.Помимо извлечения данных из БД для принятия решений, актуален процесс извлечения знаний для удовлетворения информационных потребностей пользователя. Если в ЭС основное внимание уделяется проблеме извлечения знаний от экспертов, то в данном случае знания извлекаются из БД.С точки зрения пользователя в процессе извлечения знаний из БД должны решаться задачи преобразования данных (неструктурированных наборов чисел, символов) в информацию (описание обнаруженных закономерностей), информации в знания (значимые для пользователя закономерности), знаний в решения (последовательность действий, на-правленных на удовлетворение информационных потребностей поль-зователя).Интеллектуальные средства извлечения знаний из БД позволяют выявить закономерности и вывести правила из них. Эти закономерности и правила можно использовать для принятия решений и прогнозирования их последствий. Существует несколько интеллектуальных методов выявления и анализа знаний: ассоциация, последовательность, классификация, кластеризация и прогнозирование. Ассоциация имеет место в том случае, когда несколько событий связаны друг с другом. Если существует цепочка связанных во времени событий, то говорят о последовательности. С по-мощью классификации выявляются признаки, характеризующие группу, к которой принадлежит тот или иной объект. Кластеризация аналогична классификации, но отличается от нее тем, что сами группы еще не сформированы. С помощью прогнозирования на основе особен-ностей поведения данных оцениваются будущие значения непрерывно изменяющихся переменных (см. п. 2.5).8.2. Управление знаниямиПонятие «управление знаниями» появилось в середине 90-х годов прошлого века в крупных корпорациях, где проблемы обработки информации приобрели особую остроту. Системы управления знаниями (Knowledge Management) получили название КМ-систем. Для их при-менения используются следующие технологии:электронная почта;базы и хранилища данных;системы групповой поддержки;браузеры и системы поиска;корпоративные сети и Интернет;ИИ-системы.Хранилища данных, которые работают по принципу центрального склада, стали одним из первых инструментариев КМ. Управление знаниями – это совокупность процессов, которые управляют созданием, распространением, обработкой и использованием знаний внутри пред-приятия. Необходимость в разработке КМ-систем возникла в силу нескольких причин:работники предприятия тратят слишком много времени на поиск необходимой информации;опыт ведущих специалистов используется только ими самими;ценная информация «захоронена» в огромном количестве докумен-тов, доступ к которым затруднен;из-за недостаточной информированности и игнорирования преды-дущего опыта повторяются «дорогостоящие» ошибки.Одним из новых решений по управлению знаниями является понятие корпоративной памяти, которая фиксирует информацию из различных источников предприятия и делает ее доступной специалистам для решения производственных задач. Корпоративная память не позволяет исчезнуть знаниям выбывающих специалистов. Различают два уровня корпоративной памяти: Уровень материальной или явной информации – данные и знания, которые содержатся в документах организации в виде сообщений, статей, справочников, патентов, ПО. Уровень персональной или скрытой информации – персо-нальные знания, неотрывно связанные с индивидуальным опытом, которые могут быть переданы через процедуры извлечения знаний. Скрытое зна-ние – основа СППР. При разработке КМ-систем можно выделить следующие этапы: Стихийное и бессистемное накопление информации в орга-низации. Извлечение знаний – наиболее сложный и трудоемкий этап. Структурирование – выделение основных понятий, выработка структуры представления информации. Формализация – представление структурированной информа-ции на языках описания данных и знаний. Обслуживание – корректировка данных и знаний. Автоматизированные системы КМ OMIS (Organizational Memory Information Systems) предназначены для накопления и управления знаниями предприятия (рис. 8.1). Рис. 8.1. Архитектура OMISОсновные функции OMIS:сбор и систематическая организация информации из различных источников в централизованное или структурное ХД;интеграция с существующими автоматизированными системами;обеспечение нужной информации по запросу.В отличие от ЭС первичной целью систем OMIS является не поддержка одной задачи, а лучшая эксплуатация необходимого общего ресурса знаний.Первые информационные системы на основе гипертекстовых (ГТ) моделей появились в середине 60-х годов ХХ века, но первые ком-мерческие ГТ-системы относятся к 1980-х годам. Под гипертекстом понимают технологию формирования информационных массивов в виде ассоциативных сетей, элементами или узлами которых выступают фраг-менты текста, рисунки, диаграммы. Навигация по таким сетям осу-ществляется по связям между узлами. Основные функции связей:переход к новой теме;присоединение комментария к документу;соединение ссылки на документ с документом, показ на экране графической информации;запуск другой программы.Мультимедиа (ММ) понимается как интегрированная компьютерная среда, позволяющая наряду с традиционными средствами взаимодействия человека и компьютера (дисплей, принтер, клавиатура) использовать новые возможности – звук, мультипликацию, видеоролики. Когда элементы ММ объединены на основе сети гипертекста, можно говорить о гипермедиа (ГМ). Основной сферой применения ГМ являются автома-тизированные обучающие системы или электронные учебники. Глобаль-ный успех в этом направлении получила сеть Интернет.8.3. Технология создания систем управления знаниямиПроектирование систем управления знаниями (СУЗ) или КМ-систем декомпозируется на этапы, которые свойственны любой другой ИИ-системе. Вместе с тем имеется ряд особенностей:коллективное использование знаний предполагает объединение и распределение источников знаний по различным субъектам, а следо-вательно, решение организационных вопросов администрирования и оп-тимизации деловых процессов, связывающих пользователей СУЗ;задача проектирования СУЗ носит непрерывный характер, поскольку постоянно добавляются внешние источники данных;поскольку СУЗ имеет многоцелевое значение, возникает потребность в интеграции разнообразных источников знаний на основе единого се-мантического описания пространства знаний.Этапы проектирования СУЗ:идентификация проблемной области:определение типов решаемых задач;отбор источников знаний;определение категорий пользователей;концептуализация:выявление понятий (категорий);выявление свойств (отношений);построение правил (ограничений);формализация:выбор метода представления знаний;представление знаний;реализация:создание онтологий;аннотирование и подключение источников знаний;настройка (создание) приложений;внедрение:тестирование;развитие.Онтология (от греч. «онтос» – сущее, «логос» – учение) – это точное (явное) описание концептуализации знаний, учение о сущем.Идентификация проблемной областиВ первую очередь определяется состав решаемых задач. Возможно создание узкоспециализированных систем по конкретным функциям управления: маркетинга, менеджмента, финансов. Разработка СУЗ может начинаться с отдельных областей, например с маркетинга, не требуя одновременной разработки всех необходимых онтологий и источников знаний. Для создания БЗ прецедентов требуется определить набор типовых бизнес-процессов, для которых будут отбираться прецеденты (например, разработка проектов, заключение договоров, проведение PR-акций). Центральное место в проектировании СУЗ занимает онтология, которая определяет и интегрирует все источники знаний. Требования разработки онтологий оформляются в виде спецификации требований (таблица). Предметная область Подбор и повышение квалификации персонала компании Назначение Онтология служит для обмена знаниями между депар-таментом управления и менеджерами проектов при отборе персонала. Используется для семантического поиска квали-фикационных характеристик для выполнения определенных видов работ Область значений Онтология содержит концепты (категории) управления пер-соналом. Концепты используемых квалификаций в техно-логиях рассматриваются детально Продолжение табл. Предметная область Подбор и повышение квалификации персонала компании Поддерживающие приложения Система управления квалификацией персонала в ИНТРАНЕТ-среде Источники знания Web-страницы департамента управления персоналомРуководство о развитии персоналаСпецификация продукции и технологийИнтервью с работниками департамента управления персо-налом и менеджерами проектов Концептуализация знаний с помощью онтологийНазначение онтологий – обеспечение возможностей:повышения интеллектуальности СУЗ на основе того, что остается неявным;стандартизации на основе описания целевого мира в виде словаря, разделения знаний между различными пользователями и компьютерными системами;систематизации знаний, позволяющей интегрировать разнородные источники знаний на базе единой многоаспектной таксономии, пред-ставляемой в общем словаре;снабжения необходимыми понятиями, отношениями и ограниче-ниями, которые используются как строительные блоки для создания конкретной модели решения задач;постепенного обобщения понятий конкретной проблемной об-ласти.Требования к проектированию онтологий знаний:ясность – четкая передача смысла введенных терминов (кон-цептов);согласованность – логическая непротиворечивость определений;расширяемость – возможность монотонного расширения и специали-зации без необходимости пересмотра уже существующих понятий;инвариантность к методам представления знаний;отражение только наиболее существенных предположений о модели-руемом мире.Онтологическое знание организуется на трех уровнях, в связи с чем выделяют онтологии:верхнего уровня (метаонтология);предметной области;задач.Метаонтология отражает такие общие понятия, как «сущность», «класс», «свойство», «значение», «типы данных», «типы отношений», «процесс», «событие». Определение общих категорий позволяет системе контролировать синтаксические конструкции понятий предметных и проблемных областей, которые идентифицирутся как наследники общих категорий.Онтология предметной области определяет набор понятий, ис-пользуемых при решении различных интеллектуальных задач и независимых от применяемого метода. При построении онтологии предметной области выявляются свойства и отношения понятий, строятся логические правила, расширяющие семантику модели предметной области.Онтология задач имеет дело с понятиями, описывающими методы преобразования объектов предметной области в процессе решения задач. Например, для задач обучения в качестве методов могут использоваться дедуктивный (от общего к частному), индуктивный (от частного к общему) и абдуктивный (от частного к частному). С помощью понятий, свойств и отношений описывается сущность используемых методов, устанавливается последовательность их выполнения. Введение онтологии задач позволяет расширить класс интеллектуальных задач, решаемых с помощью СУЗ, в частности перейти от простых поисковых задач к задаче конфигурации, когда система автоматически разбивает задачу на под-задачи, для каждой подзадачи выбирает метод решения, а для каждого метода – необходимые единицы предметных знаний. Такая СУЗ является не просто интеллектуальной информационно-поисковой системой, но и системой, которая планирует и генерирует решение задачи. В этом аспекте СУЗ должна обладать развитым механизмом вывода и по своей реализации сближается с классом ЭС, но на более развитой семанти-ческой основе. Формализация онтологического знанияВ основу формализации онтологий, с одной стороны, положены общепризнанные методы представления знаний (исчисление предикатов, семантические сети и фреймы), с другой  методы описания онто-логических знаний с помощью специальных семантических конструк-ций. В качестве языков представления онтологического знания исполь-зуются:языки, основанные на исчислении предикатов;HTML-подобные языки;XML-подобные языки.Языки, основанные на исчислении предикатов, построены на декларативной семантике и обеспечивают выражение произвольных логических предложений. С помощью этих языков хорошо представляется метазнание, что позволяет пользователю представлять знания в явном виде и разрешает пользователю применять новые конструкции представления знаний без изменения самого языка. Одним из таких языков является KIF, разработанный для обмена знаниями между различными программными агентами (ЛИСП-подобный язык).HTML-подобные языки (Hypertext Markup Language) – инструмент разметки гипертекста. С использованием HTML создано более 60 % ресурсов современного Интернета. Браузер – специальная клиентская программа, предназначенная для просмотра содержимого Web-узлов и отображения документов HTML. В качестве основы для описания онтологий и онтологического аннотирования текстов может выступать язык разметки данных HTML, дополненный специальными тегами (указателями). С помощью тегов происходит выделение семан-тических фрагментов текста, которые унифицированно интерпрети-руются семантическими анализаторами различных ПС. Языки данной группы позволяют описать объекты онтологии (концепты), отношения между ними и определить правила вывода. Основное назначение таких языков состоит в возможности описания онтологии, аннотирования необходимых Web-страниц концептами онтологии и дальнейшем осу-ществлении поиска данных Web-страниц с помощью специальной по-исковой машины.В качестве основы для XML-подобных языков выступает расширяемый язык разметки. В настоящее время существует около 20 различных языков, основанных на XML. Основным достоинством языка является то, что для работы с документами, подготовленными с помощью него, достаточно обычного интернет-браузера, т.е. не требуется никаких дополнительных средств. XML-документ представляет собой размеченное дерево. Структура XML описания обычного учебного курса приведена на рис. 8.2.Язык XML не обладает практически никакими возможностями в области представления онтологий. В нем отсутствуют специальные конструкции, позволяющие описать взаимоотношения между концептами онтологии, правила вывода. Он предназначен исключительно для представления данных. Язык RDF, представляющий расширение XML, позволяет описать концепты, отношения между ними, поддерживает иерархию концептов и их наследование, задает некоторые правила вывода. Базовыми строительными блоками в RDF является триплет «объект –атрибут – значение», часто записываемый в виде A (O, V), которыйчитается как «объект О имеет атрибут А со значением V». В семантической сети эту связь можно представить как ребро с меткой А, соединяющее два узла – О и V.Р ис. 8.2. Размеченное деревоВыбор ИС реализации СУЗ во многом определяется требуемой функциональностью использования СУЗ: информационным поиском в источниках знаний, коллективным решением задач, обучением и др. Для узкоспециализированных целей, ориентированных на поиск в интернет-ресурсах, применяются специализированные системы, например SHOE, которая обеспечивает аннотацию документов, сбор знаний в централи-зованную БЗ, выполнение поисковых запросов.Инструментальные средства должны обеспечивать выполнение двух основных групп функций: Создание и поддержание источников знаний: создание и поддержание онтологий;аннотирование источников знаний;подключение источников знаний;автоматическую рубрикацию и индексирование источников зна-ний; Доступ к источникам знаний: реализация запросов;навигация и просмотр;коммуникация пользователей;распространение знаний.Глава 9. Интеллектуальные информационные системыв условиях неопределенности и риска9.1. Понятие риска в системах поддержки принятий решений слабоструктурированных проблемЭкономические решения в зависимости от определенности воз-можных исходов или последствий рассматриваются в рамках трех моделей [16] выбора решения:в условиях определенности, если относительно каждого действия известно, что оно неизменно приводит к некоторому исходу;в ситуации риска, если каждое действие приводит к одному из множества возможных частных исходов, причем появление каждого исхода имеет вычисляемую или экспертно оцениваемую вероятность;при неопределенности, когда то или иное действие имеет своим следствием множество частных исходов, но их вероятности неиз-вестны.Вероятностные методы обеспечивают подходящие условия для принятия решения и содержательные гарантии качества выбора. При этом исходят из предположения, что суждения относительно значений, предпочтений и намерений представляют собой ценные абстракции человеческого опыта и их можно обрабатывать для принятия решений. В то время как суждения относительно правдоподобия событий квалифицируются вероятностями, суждения относительно желательности действий представляются понятиями. Байесовская методология рас-сматривает ожидаемую полезность U(d) как оценку качества решения d. В соответствии с этим, если мы можем выбрать либо действие d1, либо d2, вычисляем U(d1), U(d2) и выбираем действие, которое соответствует наибольшему значению. Семантика полезности состоит в том, чтобы описать риск.Под риском принято понимать вероятность (угрозу) утраты лицом или организацией части своих ресурсов, недополучения доходов или появления дополнительных расходов в результате осуществления определенной финансовой политики.Уровень риска – это объективная или субъективная вероятность возникновения потерь. Под объективной вероятностью понимается ко-личественная мера возможности наступления случайного события, по-лученная с помощью расчетов или опыта, позволяющая оценить веро-ятность выявления данного события. Субъективная вероятность пред-ставляет собой меру уверенности в истинности высказанного суждения и устанавливается экспертным путем.Уровни риска наиболее легко устанавливаются при помощи атрибутивных оценок типа «высокий», «средний», «небольшой». Разно-видностью атрибутивной оценки рисков является буквенная кодировка. При этом в порядке нарастания риска и падения надежности используются латинские буквы от А до D. AAA – самая высокая надежность;AA – очень высокая надежность;A – высокая надежность;…D – максимальный риск.Оценивать уровень риска можно, используя показатели бухгалтер-ской и статистической отчетности, в первую очередь КТЛ – коэффициент текущей ликвидности, который представляет собой соотношение ликвид-ных средств партнера и его долгов.В результате анализа ситуации строятся причинно-следственные диаграммы («дерево причин») и диаграммы зависимостей. Причинно-следственная диаграмма является формальным отображением структуры проблемной ситуации в виде иерархически незамкнутого графа, вер-шины которого соответствуют элементам проблемы, отражающим при-чины ее возникновения, а дуги – связям между ними. Связь элементов-подпроблем отображается в виде отношения «причина – следствие» (рис. 9.1). Рис. 9.1. Модель системы поддержки принятия решений: OLTR – средства складирования данных и оперативной обработки транзакций; OLAR – средства оперативной обработки информацииКорпоративная БД, организованная в виде ХД, заполняется ин-формацией с использованием технологий OLTR и OLAR. Для создания и реализации СППР слабоструктурированных проблем должны быть разработаны и адаптированы к ее условиям следующие методы и средства:система признаков для регистрации проблемных ситуаций;методы оценки степени критичности проблемных ситуаций;причинно-следственные диаграммы для диагностирования причин возникновения проблемных ситуаций;таблица принятия решений для формирования и выбора вариантов решений;методы прогнозирования результатов решений;модели функционирования предприятия и внешней среды.Наиболее распространенной формой выявления проблем с исполь-зованием технико-экономических показателей является сравнение их фактических величин с нормативными и средними значениями.Логический анализ проблем-причин, находящихся на нижних уровнях иерархии, показывает, что во многих случаях они позволяют сформировать варианты решения проблем более высокого уровня. Например, возможны следующие варианты решения проблемы снижения объемов производства и сбыта продукции:варьирование ценами;варьирование формами оплаты;снижение численности работающих;сокращение доли условно-постоянных расходов в себестоимости продукции;сокращение сроков выполнения заказов;усиление службы маркетинга.Когда отсутствуют статистические данные, необходимые для расчета объективной вероятности риска, прибегают к субъективным оценкам, основанным на интуиции и опыте экспертов. Дж. Кейнс ввел понятие субъективной вероятности. В соответствии с принципом безразличия одинаково правдоподобные события или суждения долж-ны иметь одинаковую вероятность, что математически записывается так:А В ≡ Р(А) = Р(В),где

Рис. 10.1. Связь между видами знаний и формами их репрезентации



Понятие «цифровой экономики» было введено Н. Негропонте в 1995 году как метафора новой информационной культуры, органической частью которой стал контент в цифровой форме (музыка, фильмы, игры), что вначале определялось как «компьютирование». Со временем оно в большей степени стало применяться в экономике. К определению термина «цифровая экономика» существуют «классический подход» и «расширенный подход». Классический подход определяет цифровую экономику как экономику, основанную на цифровых технологиях, электронные товары и услуги, телемедицину, дистанционное оборудование и медиаконтент. Расширенный подход определяет цифровую экономику как экономическое производство с использованием цифровых технологий, цепочку товаров и услуг, которые оказываются с использованием цифровых технологий, интернет-вещей, Индустрия 4.0, умная фабрика, сети связи 5-го поколения и инжиниринговые услуги [27].
12.3. Цифровые технологии
Применительно к цифровой экономике цифра понимается как сигнал, передающий число или управляющий импульс, который доходит до каждого экономического агента (поставщика, потребителя, посредника), что создает новые возможности по автоматическому управлению производственными и логистическими процессами в рамках предприятия и экономики страны в целом. Максимальный уровень эффективности достигается в том случае, когда все транзакции проводятся автоматически по всей цепочке (сквозные технологии), без участия человека, и транзакционные издержки снижаются практически до нуля. К сквозным цифровым технологиям относятся:

  • большие данные (Big Data);

  • искусственный интеллект;

  • системы распределенного реестра (blockchain);

  • квантовые технологии;

  • промышленный интернет или интернет вещей (IoT);

  • компоненты робототехники и сенсорики;

  • технологии беспроводной связи (внедрение сетей стандарта 5G);

  • технологии виртуальной и дополненной реальностей.

Следующим в иерархии понятийного аппарата цифровой экономики является понятие «цифровая экосистема». Бизнес-эффекты цифровых технологий проявляются через изменения потребительского спроса, конкуренции и цепочек поставок. Более комплексный подход включает в себя редизайн ключевого потребительского предложения путем превращения его в интегрированное решение или платформу. Поэтому в экономическом смысле суть цифровизации состоит в переходе к созданию партнерств с целью построения экосистемы вокруг цифровой платформы. Примерами цифровых экосистем являются платформы таких интернет-гигантов, как «Фейсбук»,Amazon, Alibaba и другие масштабные интернет-системы комплексного взаимодействия потребителей с поставщиками товаров и услуг.


Представление о цифровой экосистеме базируется на следующих положениях:

- концепции цифрового двойника, модели некоторого объекта с присущими ему взаимосвязями с внешним миром. В отношении реального производства это создание виртуальных прототипов конкретного физического изделия или процесса с целью сбора и повторного использования цифровой информации;

- автоматическом управлении цепочками взаимодействия как дальнейшего развития клиенто-ориентированного подхода, реализуемого ранее в рамках концепции логистического управленияVMI, суть которой состоит в том, что уровнем запасов того или иного товара на складе розничного продавца управляет его поставщик;

- концепции комплексного управления жизненным циклом продукта, реализуемой с помощью соответствующего инструментария, позволяющего отслеживать каждую партию продукта на всех этапах жизненного цикла. При этом цифровизация предполагает применение датчиков, встраиваемых в оборудование и перманентно определяющих его состояние, то есть речь идет об интернете вещей.

Цифровая трансформация как еще одно ключевое составляющее понятия «цифровая экономика» предполагает изменение бизнес-процессов и институтов управления таким образом, чтобы предприятия могли воспользоваться преимуществами новых технологий. Успешная цифровая трансформация реализуется путем преобразования существующих на предприятии бизнес-процессов в направлении их «бесшовности» и следования принципу концепции интеллектуального управления, за счет чего происходит переход от планирования на основе обработки информации, когда она представляется в виде изображения численного значения, к прямому автоматическому управлению на основе сквозного цифрового сигнала. При этом, если традиционные информационные технологии направлены в большей степени на анализ состояния предприятия и решение отдельных задач, то применения цифровых технологий в большей степени ориентировано на решение задач пользователя, которые в основном носят неформальный характер и направлены на интересы и удобство клиентов. Драйверами роста в цифровой экономике являются данные, знания и люди, обладающие этими знаниями.
12.4. «Индустрия 4.0» и интернет вещей
В 2016 году К. Шваб ввел в массовое употребление термин «Индустрия 4.0», ставший синонимом Четвертой промышленной революции, которая основана на массовом внедрении информационных (цифровых) технологий в промышленность, масштабной автоматизации бизнес-процессов и распространении методов ИИ, интернета вещей (IoT), виртуальной (VR) и дополненной (AR) реальностей.



Современному состоянию мировой экономики характерен взрывной характер роста объема информации. Обычное программное обеспечение не способно проанализировать информацию объемом в терабайты и зеттабайты (Big Data). Для их обработки используются методы машинного обучения (см. п.п. 10.2). Кроме того, методы ИИ лежат в основе рекомендательных сервисов онлайн-магазинов, голосовых помощников, фильтрации контента, распознавания речи и лиц людей.

Интернет вещей объединяет устройства в компьютерную сеть и позволяет им собирать, анализировать, обрабатывать и передавать данные другим объектам через специальное программное обеспечение, приложения и технические устройства. IoT-системы работают в режиме реального времени и состоят из сети «умных» устройств и облачной платформы, к которой они подключены с помощью WiFi, Bluetooth или других видов связи. Облачная платформа, как средство работы с различными программами и хранения информации, находящаяся вне конкретного предприятия, предоставляет больше услуг, чем платформа конкретного предприятия, использующего Windows Server.

Сеть вещей, подключенных к интернету и взаимодействующих между собой или с внешней средой, может использоваться в быту - трекеры здоровья, охрана дома, поддержание комфортных условий в жилом помещении, камеры видеонаблюдения, цифровые помощники, страховая телематика (техническое средство с широкими функциональными возможностями, призванное помочь водителю на расстоянии). Сначала устройства собирают данные (медицинские, комфортности, безопасности), затем эти данные отправляются в облако, где программное обеспечение обрабатывает их, оповещая в дальнейшем пользователя или само принимает решение (вызывает врача, звонит в полицию). Одним из преимуществ IoT является автономность и отсутствие человеческого вмешательства в работу системы.

В промышленности интернет вещей позволяет автоматизировать процессы и снижать трудозатраты. Это сокращает объем отходов, улучшает качество предоставляемых услуг, удешевляет процесс производства и логистику. В электроэнергетике на основе IoT улучшается контролируемость подстанций и линий электропередачи за счет дистанционного мониторинга, в транспортной логистике сокращаются затраты на грузоперевозки и минимизируется влияние человеческого фактора. Применение интернета вещей для углубленной аналитики по буровым скважинам помогает нефтегазовой промышленности увеличить объемы добычи на уже отработанных месторождениях. По прогнозам Gartner, к 2021 году к интернету будет подключено 25 млрд технических устройств различного функционального назначения.


Основной проблемой, с которой связано бурное развитие IoT, является безопасность. Киберпреступники постоянно пытаются взламывать устройства удаленного наблюдения, погружают вирусы на взломанные устройства, совершают диверсии на производствах, фишинговые атаки, которые представляют собой один из видов интернет мошенничества с использованием социальной инженерии для получения доступа к конфиденциальной информации пользователей.

Заключение
Разработка и развитие ИИС как одного из основных направлений искусственного интеллекта в настоящее время является интенсивно развивающейся областью знаний и прикладных исследований в различных отраслях экономики. Значительные усилия отечественных и зарубежных ученых направлены на решение проблем, связанных с машинным извлечением знаний на основе распознавания смысла текста, разработки гибридных моделей представления знаний (фреймо-продукционных, нейро-логических, нейро-семантических) и соответствующих алгоритмов логического вывода. Постоянно совершенствуются инструментальные средства построения ИИС, в том числе на основе ЕЯ-интерфейсов.

В нашей стране и за рубежом ежегодно проводятся многочисленные научно-технические конференции, выходят периодические издания «Программные продукты и системы», «Интеллектуальные системы и принятие решений» в области искусственного интеллекта, что

подтверждает актуальность данных исследований.
Приложение

Контрольные вопросы по Модулю 1 (для очного обучения)

1. Определить понятие «искусственный интеллект».

2. В каких направлениях осуществляется развитие искусственного интеллекта?

3. Определить этапы трансформации данных при их обработке на компьютере.

4. Определить понятия «проблемная» и «предметная» области.

5. Определить этапы трансформации знаний при их обработке на компьютере.

6. В чем суть прагматического подхода к формированию поля знаний?

7. Чем отличаются глубинные знания от поверхностных?

8. Какой язык представления знаний имеет максимальную точность?

9. Чем определяется семантическая избыточность естественного языка при представлении знаний?

10. Определить экстенсионал и интенсионал задания знаний.

11. Каким образом НЕ-факторы, проявляются в рассуждениях эксперта.

12. Как определяются нечеткие знания?

13. Что определяет функция принадлежности?

14. Определить основные аспекты извлечения поверхностных знаний.


15. Определить слои психологических проблем, возникающие при из-влечении поверхностных знаний.

16. Какие коммуникативные методы извлечения поверхностных знаний относятся к пассивным?

17. При наступлении какого условия процедура «мозгового штурма» извлечения поверхностных знаний прерывается и почему?

18. В чем отличие процедуры интервьюирования от анкетирования при извлечении поверхностных знаний?

19. При реализации какого метода извлечения поверхностных знаний критика высказываний экспертов допускается?

20. В чем суть интеллектуального анализа данных?

21. Определить основные этапы ИАД при извлечении знаний.

22. Определить основные задачи ИАД.

24. В чем суть метафорического метода извлечения глубинных знаний?

25. Каким образом происходит построение репертуарной решетки и почему она не всегда является матрицей в строгом смысле?

26. Для представления каких знаний используются модульные модели, а для каких сетевые?

27. Определить понятия антецедента и консеквента продукционного правила.

28. В чем суть индуктивного логического вывода?

29. В чем суть дедуктивного логического вывода?

30. Какой метод логического вывода используется в интеллектуальных системах с неполными знаниями?

31. При каком условии формируется конфликтное множество и как происходит его разрешение?

32. С помощью какого системного слота фреймы связываются в сеть?

33. С какой целью используются указатели наследования слотов?

34. Определить основные типы фреймов.

35. Определить способы получения слотом значений во фрейме-экземпляре.

36. Определить разновидности процедуры «демон».

37. Каким образом во фреймовых моделях реализуется механизм логического вывода?

38. Определить структуру семантической сети.

39. Какие существуют типы семантических отношений?

40. В чем отличие однородных семантических сетей от неоднородных?

41. Существуют ли ограничения на число вершин в бинарных n-арных семантических сетях?

42. Каким образом в семантической сети реализуется механизм логического вывода?

43. Для решения каких задач, в основном, используется представление знаний в виде семантической сети?

44. Определить простое высказывание и предикат первого порядка.

45. В чем отличие n-арного предиката от предиката порядка n?

46. Определить роль кванторов существования и общности в формально-логической модели представления знаний.

47. Определить понятия «терм» и «атом» в формально-логической модели.