Файл: Алпысов А.. Математиканы оыту дістемесі оу ралы Павлодар, 2012.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 08.11.2023

Просмотров: 1801

Скачиваний: 142

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Алпысов А.Қ.

1. Математиканы оқыту әдістемесі пәні

2. Математиканы оқытудың мақсаттары мен мазмұны

Математиканы оқытудың қағидалары

Математиканы оқытудың әдістері

5. Математикалық ұғымдар, сөйлемдер және оларды үйренудің әдістемесі

6. Математиканы есептер арқылы оқыту әдістемесі

Математикадан сыныптан тыс жұмыстар, оны өткізу әдістері

9. Педагогикалық практика туралы

10. Геометрияны оқыту әдістемесі Планиметрия курсын үйрену әдістемесі. Геометрия есептерін шешудіңәдістері. Стереометрия курсын үйренуәдістемесі. Геометрияны оқытуда есептерді шеше білу дағдысын қалыптастыру және оны жалпы түрде дамыту аса маңызды мәселелердің бірі болып табылады. Геометриялық есептерді шешу туралы жалпы білік- дағдылар әдетте көптеген есептерді шешу арқылы қалыптасады. Олай болса, студент пен оқытушының не мұғалім мен оқушының жүйелі түрде ұзақ уақыт еңбектенуіне тура келеді. Шешілу жолы беймәлім, әр түрлі теориялық фактілерді байланыстыруды қажет ететін, студенттер шығара алмайтын жаңа есептер де жиі кездеседі. Сондықтан студенттерді кез келген геометриялық есепті шешудің жалпы тәсілдерімен қаруландыру керек. Бұл талап математикалық есептерді шешу практикумының бағдарламасында да айтылған. Практикум белгілі бір есептердің түрлерін және оларды шешудің тәсілдерін таныстыруға бағытталып қана қоймай, қайта дәлелдеудің барынша жалпы әдістерін ойлауды меңгерту болып табылады. Оқытушы студентке әрбір есепті шығартқанда, оның шешімін әдістемелік талаптарға сай іздеуге, соңында мақсатқа сай дұрыс шешімді табуға жәрдемдесетіндей талдау тәсілдері мен болашақ мұғалімдерге қажетті білім-білік дағдыларын қалыптастыруға ұмтылады. Теориялық және әдістемелік білім мен әдіс- тәсілдерінсіз кез-келген әдістемелік есепті шешуге бола бермейді. Практикадан байқалатындай, көбінесе геометрия есептері әр түрлі тәсілдермен логикалық тұрғыда көбірек ойлануды қажетсінеді. Геометрия есептерін шешудің кезеңдерін білу оқушылар мен студенттерде қалыптастырылуға тиісті аса маңызды дағдылардың бірі. Есептерді шешу процесі келесі кезеңдерден тұрады. Есептің шартын түсіну: а) есепті талдау; б) есеп шартын схема түрінде жазу. Есепті талдағанда оның шарты қандай, онда қандай талап қойылған (не берілген, не белгілі, есеп шарты неден тұрады?) екені анықталады. Есеп шартын схема түрінде жазғанда оның сызбасы қоса қарастырылады, осы талдаудың нәтижесінде есеп шартындағы ең керекті, таныс элементтер ескеріліп, олар қысқаша жазылады. Есепті талдау мен оның сызбасын және шартын схема түрінде қысқаша жазу — есепті шешу үшін жоспар іздеудің негізгі құралы болып табылады. Есепті талдай келе осы есепке қандай мөлшерде теориялық білімнің қажет болатындығы анықталады. Есеп шешімін іздеу — есепті шешудің тәсілін іздеу, бұл бүкіл процестің негізгі бөлігі болып табылады. Бұл кезеңде ең алдымен берілген есептің түрі (типі), яғни оның дәлелдеуге, есептеуге не геометриялық түрлендіруге берілгені анықталады, осыған орай есепті шешу тәсілі ізделеді. Есеп шартында берілген элементтер мен іздеуге, анықталуға тиісті белгісіздер арасындағы байланыс ізделеді. Есеп шешімін іздеуде бір-бірімен тығыз байланысты мынадай екі жақты мәселені анықтайды: а) белгілі теориялық білімді шешілуге тиісті есеп шартына сай түрлендіру; б) есеп шартын белгілі теориялық фактілерге сәйкес және оларға байланысты түрлендіру. Бұл арада теориялық білім деп отырғанымыз математикалық ұғымдар мен олардың анықтамалары, теоремалар және математикадағы негізгі әдістер (координаттар әдісі, векторлық әдіс, геометриялық түрлендірулер мен теңдеулер құру әдісі және т.б.). Есептердің түрі мен құрылысына қарай оларды кластарға жіктеп талдау мен шешу әдістерін таңдап алады. Әсіресе, бірнеше теориялық материалдарды біріктіретін, әрі күрделі, әрі көптеген есептерді шешуге теориялық әдістемелік негіз болатын тірек есептерін талдау кезінде белгілі бір гипотеза ұсынылады және оның іске асырылуы тексеріледі. Есеп шешімін іздеу үшін гипотеза ұсына отырып, осы есепке нақтылы қандай теориялық материал керек болатынын анықтаймыз. Теориялық білімді негіздеуші әдісті таңдап, гипотезаны тексереміз. Егер есепті талдағанда бұрыннан таныс элементті байқасақ, не ол шешілуі таныс есепке ұқсас болса, онда есепті шешу үшін белгілі әдісті қолдану мүмкіндігі туралы ой, не есепті шешу жоспары пайда болады. Егер есептің таныс емес түрін шығаруға тура келсе, онда одан бұрыннан таныс есептердің кемінде бір элементін іздейміз немесе берілген есеп шартын бұрын шешілген есептегі таныс бір элемент табылатынын талдаймыз. Жоспарды іске асыру. Бұл арада шешу идеясы табылып, есеп шешіледі. Шешілген есепті талқылау: а) есеп шешімін тексеру; б) есепті зерттеу; в) есеп шешімін әр түрлі параметрлер мен байланыстар бойынша талдау. Есептің шешілуінің және оған қолданылған әдістер мен теориялық негіздеулердің дұрыс екенін, ол шешім есеп шартының барлық талаптарын қанағаттандыратынын білу үшін оны тексеру керек. Есепті зерттеу келесі мәселелерді анықтауы керек: қандай шарт орындалғанда есептің шешімі бар; қандай шарт орындалғанда есептің жалпы шешімі жоқ болады?Есептің шешімін талдау мынадай мәселелерге жауап береді. Есепті шешудің бұдан басқа ең тиімді жолы жоқ па? Есепті жалпылауға бола ма? Осы есептен қандай қорытындылар жасауға болады? Есепті шешу процесінің құрылымы ең алдымен есептің сипатына, есеп шығарушының қандай біліммен, білікпен, дағдымен қаруланғанына тікелей байланысты. мысал. Тікбұрышты үшбұрыштың катеттеріне жүргізілген медианаларысм жәнесм. Оның гипотенузасын табу керек (8-сурет). А ЕС ВF8-суретШешуі. ВС мен AC катеттерін сәйкес х пен у ар-ылы белгілейік. ВСЕ, ACF — тікбұрышты үшбүрыштар болғандықтан,ВС 2  BE 2  EC 2және CF2 AF 2 AC 2 , яғни x2 2  y73  4жәнеx  52  y2 24 . Бұл тендеулер жүйесін шешіп, х пен у-ті табамыз: 73  0,25y2  4  52  4y2 ,y2  36 ; y  6cм ,х  8см;АВ  10см . мысал. ABC үшбұрышында АВ=26см, BC=30см, АС=28см. В төбесінен ВН биіктігі мен BD биссектрисасы жүргізілген. BHD үшбұрышының ауданын табу керек. Шешуі. ABC үшбұрышының ауданын екі әдіспен өрнектейік: SAВС 0,5АС  ВН 0,5  28  h  14h ; екінші жағынанS АВС  336см2 . Демек, 14h=336, h=24 см. Енді CD=x деп алып, ABC үшбұрышының ішкі бұрышы биссектрисасының қасиетін пайдаланайық: ВС:АВ=CD:DA, 30:26=x:(28-x), х=СD=15см; AD=28-15=13см. ВСН : СН 2  ВС 2  ВН 2  324, CH=18 см, DH=CH-CD=18-15=3см, S=0,5DH  ВН 36см2 . мысал. Медианалары mb  9см ,ma  12см ,mc  25смболатын үшбұрыштың ауданын есептеу керек (9-сурет). СА сурет Шешуі.ABC : mb  BE  9см ,ma  AD  12см .mc  CF  15см. Берілген элементтер мен іздеген элементтің арасындағы байланысты анықтайық (О — медианалардың қиылысу нүктесі). AOC : AО  2 m  2 12  8см , OC  2 m 10см , OE  1 m 3см 3 a33 с 2 b ОЕ медианасын екі еселеп, АОС үшбұрышын AOCB1параллелограмына дейін толықтырайық. Сонда AC 2  OB2  2(AO2  OC2 ) ; AC . Осы сияқты OD медиананы екі еселеп, ВОС үшбүрышынпараллелограмға толықтырсақ: BC   .Осылай қарастырып, АВ=10см екенін аламыз. Енді Герон ABCформуласымен ауданды есептесек, S  72см2 . Осы есепті басқа әдіспен шешейік.AOC менABC -ның табандары тең болғандықтан, S 1 SШынында да,OME BNE ,OM  OE , алOE  1 AOC3 AOCBN BEBE 3 болғандықтан,OM  1 . СондықтанBN 3 SAOC SABC OMBN 1 ,3SAOC 1 S3ABC ЕндіAOCB1параллелограмынан: 1SAOC  SOCB ; OC  2 EC  2 15  10 , CB  AO  2 m  8, OB  2OE  2  1  9  6 , AOC ABC3 3 1 3 a 1 3 p  12 ,S  24см2 ,S  72см2 Геометрия есептерін шешудің әдістеріне: а) геометриялық; б) алгебралық; в) комбинациялық деп аталатын негізгі әдістер жатады.Есептерді геометриялық әдіспен шешкенде логикалық ойлаудың жәрдемімен белгілі теоремалар арқылы тұжырымдауды қажетсінетін сөйлемдерді дәлелдейміз. Ал есептерді алгебралық әдіспен шешкенде ізделінген шаманы табу, не тұжырымдауға тиісті сөйлемді дәлелдеу тікелей есептеу жолымен немесе теңдеулер мен олардың жүйелерін құру арқылы іске асады. Тікелей есептеу әдісінің мәні мынада: есептің берілгендері мен белгісіздерінің жан-жақты байланыстарынан аралық қосымша белгісіз шамалар тізбегі құрылады, тізбекке қатысытын әрбір белгісіз шама анықталады немесе іздеген шама белгілі шамалар арқылы өрнектеледі. - мысал. Теңбүйірлі ABC үшбұрышының табаны AC, төбесіндегі В бұрышы сүйір, С бұрышының биссектрисасы CD кесіндісі болсын. D нүктесі арқылы CD биссектрисасына перпендикуляр түзу жүргізілген. Бұл түзу үшбұрыштың AC табанымен немесе оның созындысымен Е нүктесінде қиылысады. AD =0,5ЕС болатынын дәлелдеу керек (10-сурет). ВFDЕ А K С сурет Есеп геометриялық әдіспен тікелей шешіледі. CD кесіндісі — EFC үшбұрышының әрі биіктігі, әрі биссектриссасы. D нүктесін ВС қабырғасымен (CD  EF және CD — С бұрышының биссектриссасы) қиылысқанша созсақ, EFC теңбүйірлі үшбұрышы шығады. Есептің шарты бойынша CD  EF. Ендеше ED = DF. D нүктесінен ВС-ға параллель түзу жүргізсек, ол AC табанымен К нүктесінде қиылысады. Бұл DK кесіндісі EDC үшбұрышының медианасы бола алады. ЕК:КС = ED:DF = 1, бұлардан DK = 0,5ЕС, сондықтан AD = DK= 0,5 EC. -мысал.Теңбүйірлі трапецияға іштей дөңгелек сызылған. Трапеция ауданының дөңгелек ауданына қатынасы -ге тең. Трапецияның үлкен8 табанындағы сүйір бүрышын табу керек (11-сурет). ABCD — теңбүйірлі трапециясы берілген,Sдон : STP  : 8 . Бірінші тәсіл. Есептің мазмұнынан оны синтез әдісімен немесе алгебралық әдіспен шешуге болатынын байқаймыз. Синтез әдісі бойынша берілгендерге сүйеніп дөңгелектің радиусын табуға болады. Дөңгелектің радиусын г, трапецияның табан қабырғалары ұзындықтарын a, b деп қосымша белгісіздер ендіреміз. Есеп шарты бойынша r 20,5(a b)  2r  , 8a b 8r,r  a  b .8 Екінші жағынан шеңберді сырттай сызылған төртбұрыштың қасиеті бойынша AD+BC=AB+DC теңдігін жаза аламыз. Бұдан 2AD=a+b, AD=0,5(a+b). Тікбұрышты AED үшбұрышынанsin A  DE AD4r a  b; бұл теңдікке r-дің мәнін қойып ықшамдасақ, sin A = 0,5 шығады. Сонымен,A  .6 A BE сурет Бұл есепте жоғарыда айтылған тірек элементін және қосымша белгісіздер енгізу, теңдеу құру, қосымша белгісіздерді ығыстыру процестерінің барлығы орындалады.Екінші тәcіл. 11-суреттен AD=BC теңдігін ескеріп, бір нүктеден шеңберге жүргізілген екі жанама тең болатынын пайдалансақ, AN  a ,2NN  b,2sin A  DEAD2r AN  ND4r .a  b r-дің 1-тәсілдегі мәнін орнына қойсақ, sinA = 0,5, бұданA  .6 Теңдеулер құру арқылы шешілетін есептерді қарастыралық.6-мысал. Тікбұрышты үшбұрыштың гипотенузасы с-ға тең, үшбұрыштың бір сүйір бұрышынан катеттерінің біріне ұзындығы m-ге тең медиана жүргізілген. Осы үшбұрыш катеттерінің ұзындықтарын табу керек (12-сурет). ВDС А12-сурет Есепті теңдеу құру әдісімен (алгебралық әдіспен) шешу үшін АС=x, BC=y деп белгілейік. Тікбұрышты үшбұрыштардан Пифагор теоремасы бойынша:АС 2  ВС 2  AB 2 ,АС 2  СD2  AD2немесеx2  y2  c2 , x2 (0,5y)2 m2 . Бұл жүйенің шешіміBC  2, AC . Математикалық есептердің көбінде қосымша белгісіздер енгізу әдісі қолданылады. Бұл есептердің берілген элементтері мен қажетті теориялық материалдарды байланыстыруға септігін тигізеді. Есепті шешу барысында осы қосымша белгісіздер ығысады.7-мысал. Ромб биіктігі оның қабырғасын m және n бөліктерге бөледі.Ромб диагоналдарының ұзындықтарын табу керек (13-сурет). СА13-сурет тәсіл. Теңдеулер құруға қажетті белгісіздер енгізелік. Ол үшін АС=x, BD=y деп белгілейміз. СондаАВ  AE  EB  m  n.Бұл қосымша элементті есеп шартындағы белгілі және белгісіз шамалар арқылы өрнектейміз. ЕD  h десек,h2  y2  n2жәнеh2  (m  n)2  m2.h2 -тың мәндерін теңестірсек, у2  n2  (m  n)2  m2, х-ті табамыз:y 2  2mn 2n2немесеy . АОВ үшбұрышынан АО2  AB2  OB2  (m n)2  (0,5 AC  x  2AO 2n(m  n))2 ,. Сонда жауабы: 2n(m n), . тәсіл. Аудандарды пайдалану әдісі бойынша 0,5d1d2шамасын қосымша элементтер арқылы табылатын ауданға теңестіреміз, яғни 0,5d1d2  (m  n)2n(m  n) , мұндағыh 2n(m  n) . АОВ үшбұрышынан (0,5d )2  (0,5d )2  (m n)2 немесе d 2  d 2  4(m  n)2 . Бірінші теңдіктің екі1 2 1 2 жағында 4-ке көбейтіп екінші теңдікке қоссақ, онда 1 2(d  d )2  4(m  n)  4(m n)2  4(m n)( m  n). Бірінші теңдіктен d1 -ді тапсақ және оны соңғы теңдікке қойсақ, түрлендіргеннен кейінd  болады. Енді d 2  4(m  n)2  d2 2 1 1 теңдігінеd 2 -нің табылған мәнін қойсақ,d1  екені шығады. Егер берілген есепте кейбір шамалардың (ұзындықтардың немесе аудандардың) қатынастарын табу қажет болса, дербес жағдайда белгілі бір бұрышты есептеу қажет болса, ондай есептер көмекші параметр енгізу деп аталатын тәсілмен шешіледі. Бұл тәсіл бойынша есепті шешу үшін сызықтық элементтердің біреуін белгілі деп алып, іздеп отырған шаманы сол арқылы өрнектейді де олардың қатынастарын құрады. Мектеп оқушыларының кеңістікті қабылдап, оны көз алдына елестете алуы стереометрияны оқытудың негізгі мәселелерінің бірі болып саналады. Осы айтылған мақсатты іс жүзіне асыруда кеңістіктегі салуға берілген есептерді шешудің зор мәні бар. Жазықтықтағы геометриялық салулар теориясы жеткілікті түрде талқыланып қарастырылады, ал стереометрияның әдістемелік мәселелеріне әлі де толық көңіл бөлінбей келеді. Геометриялық салулар теориясы – салуды негіздеу, есептерді кластарға жіктеу, есеп шешу әдістері, белгілі бір класқа жататын есептерді шешу критериі, салу есептерін шешкенде барынша жай әдістерді тиімді қолдану сияқты мәселелерді қарастырады. Кеңістіктегі салу есептерін кластарға жіктеу туралы әр түрлі көзқарастар мен тәсілдер бар. А.Н. Чалов кеңістіктегі салу есептерін геометриялық салуды орындау тәсілдері бойынша келесі топтарға бөледі: 1) елестету арқылы шешілетін есептер; 2) проекциялық сызбамен шешілетін есептер; 3) модельмен шешілетін есептер. Салуға берілген стереометрия есептерін позициялық және метрикалық деп екі топқа бөлетіндер де бар. Негізгі элементтерінің қиылысуын ғана іздейтін, соны салумен аяқталатын есептер позициялық әдіспен шешілетін есептерге жатады. Кесінді салу, белгілі бір шамасы бар бұрышты салу, перпендикуляр тұрғызу, биссектриса жүргізу және т.б. белгілі шарттарды қанағаттандыратын фигура салу талабы қойылатын есептер метиркалық есептерге жатады. Мысалы, В.А. Гусев, В.Н. Литвиненко, А.Г. Мордкович өздерінің құрастырған «Математикалық есептер шешу практикумында» кеңістіктегі салуға берілген есептерді мынадай әдістер бойынша топтарға бөледі: 1) кеңістіктегі қарапайым салулар; 2) нүктелердің геометриялық орындары; 3) кейбір нүктелердің геометриялық орындары мен түзулерді пайдалану; 4) кескіндеу арқылы салу.Салуға берілген стереометрия есептері талдау, салу, дәлелдеу жәнезерттеу сияқты төрт кезеңнен тұрады.Талдау – бір бүтінді, құрамды бөліктерге жіктейтін, әр бөлікті жеке қарастыратын зерттеу әдісі. Ол салу есебін шешудің жоспарын табуға мүмкіндік тудырады. Талдау – есеп шешудің барынша маңызды кезеңі. Есепке дұрыс жүргізілген талдау – есепті шешу жоспарын дұрыс құрастырудың кепілі. Салу есебіне талдау жасағанда сызба басты рөл атқарады. Сонда есеп шартын, сызбадағы элементтердің өзара орналасуына барынша басынан аяғына дейін талдау жасалады, есеп шартында берілгендер мен іздеген элементтер арасында байланыс орнатылады. Есептің салу кезеңінде салу есебіне қолданылатын аксиомаларды, теоремаларды, қосымша қарапайым салуларды дәл көрсету керек. Дәлелдеу кезеңі есеп шешімінің дұрыстығына күдік туғанда қажет болады. Салу есебін зерттеу кезеңінің өзіндік маңызды ерекшелігі бар. Ол қандай шарттар орындалғанда есептің шешуі бар болады және неше шешімі бар деген сұрақтарға жауап береді. Сонымен бірге зерттеу кезеңі кеңістік елесті дамытуға мүмкіндік туғызады.Салуға берілген алғашқы есепті шығарғанның өзінде есепті шешудің кезеңдерін (талдау, салу, дәлелдеу, зерттеу) дәл анықтап бөлу керек.Кеңістіктегі салуға берілген есептерді шешудің негізгі әдістері:аксиоматикалық әдіс, проективтік әдіс, геометриялық орындар әдісі.Аксиоматикалық әдістің негізгі мәні есепті шешу кезінде салудың өзі орындалмайды, салуға берілген есеп элементар салуларға келтіріледі, кейін бұлардың бәрін бірге қарастыруға болатындай түрдегі барлық жай амалдар қарастырылады. Салу есебінде көрсетілген амалдар кейде аксиомалар деп, ал есепті шешу әдісі аксиоматикалық әдіс деп аталады. Себебі есепке қолданылатын барлық амалдар елестеу арқылы формальді түрде жүргізіледі де логикалық түрде негізделеді, мұндай әдіс формальді-логикалық әдіс деп те аталады. Әдетте логикалық ой тұжырымдары сызба арқылы жүрізіледі. Бұл есеп шешімін барынша жеңілдетеді: ойды іске қосады, көптеген геометриялық элементтер мен олардың жиынын есте сақтап қалуға, кеңістік жөнінде дұрыс түсінік орнығып қалыптасуына мүмкіндік берді. Аксиоматикалық әдіс оқушылар санасында кеңістік туралы түсініктің, логикалық ойлаудың дамуына барынша терең және берік теориялық білім алуға, әсіресе белгілі бір салуларға түсінік беретін стереометрияның алғашқы теоремаларын үйренуге мүмкіндік туғызады. Есептер шешу кезінде алдымен көрнекі құралдар – жазықтықтар моделі (нұсқасы), нүктелер мен түзулерді мақсатты түрде қолдану пайдасы зор. Осындай әдістер көмегімен салудың талаптары айқын түрде көрсетіледі, бұдан соң логикалық түрде негіздеу және логикалық негізде салынған кескінді салу дәлелденеді. Модельдеу есеп шешімін көрнекі түрде талдау жасауға, талдауды ықшамдауға мүмкіндік береді.Проективтік әдіс (проекциялық сызбада салу есебін шешу әдісі). Егер ерекше проекциялау ережесі бойынша геометриялық денелердің кескінін пайдалануға мүмкіндік болса, онда ол есепті сызбалық құралдың көмегімен барлық салу жұмысын орындауға болады. Мұндай кескін геометриялық денені бір жазықтыққа проекциялау жолы мен алынады және проекциялық сызба деп аталады, ал есепті шешу әдісін «проекциялық сызбада салынатын есеп» деп атайды.Кеңістіктегі салу есептерін шешуге барынша ынғайлы әдіс – еркімізше алынатын параллель проекциялау. Ол сызбаның көрнекілігімен, оны салудың өте жай қарапайым болатынымен сипатталады. Проекциялық сызба арқылы шешілетін салу есептері төрт кезеңнен тұрады. Бірақ барлық кезеңдерді әр есепте түгел іске асыру талабы қойылмайды.Геометриялық орындар әдісі. Кеңістікте элементтердің геометриялық орындарын табуға берілген кез келген есепті салу есебі ретінде тұжырымдауға болады. Кеңістіктегі геометриялық орындар әдісімен салуға берілген есептерді шешудің мәні төмендегі мәселелер арқылы сипатталады. Әуелі есептегі берілген шарттардың біреуінен басқасын ескерусіз қалдыра тұрамыз. Өзіміз әдейі таңдап алып қалаған бір ғана шартты қанағаттандыратын нүктелер жиынын қарастырамыз. Бұдан әрі есептің екінші шартын қанағаттандыратын нүктелер жиыны қарастырылады жәнет.с.с. Біз қарастырған барлық жиындардың қиылысуы есептің шешімі болады. Кеңістіктегі салу есептерін шешудің тек төрт әдісін қарастырдық. Кеңістікте салуға берілген есептерді шешудің басқа да әдістері бар. Есептер шешудің бір немесе басқа әдісін таңдап алу шешілуге тиісті есептің сипатына, есеп шығарушының дайындық дәрежесіне, т.б. байланысты. Күрделі есептерді шешу кезінде көбінесе бір мезгілде бірнеше әдіс қатарынан қолданылады.Кеңістіктегі салуға берілген есептерді шешуге мысалдар қарастырайық. мысал. Берілген а және b түзулеріне паралелль, берілген А нүктесінен өтетін жазықтық жүргізу керек. Талдау. Іздеген жазықтық а түзуіне паралелль а1түзуі арқылы өтуі керек. Дәл осы сияқты іздеген жазықтық b түзуіне паралелль b1түзуі арқылы өтуі керек. а1және b1түзулері А нүктесі арқылы өтуі керек. Салу. 1. А нүктесі және а түзуі арқылы жазықтығын жүргіземіз. 2.  жазықтығында А нүктесі арқылы а түзуіне паралелль а1түзуін жүргіземіз. 3. А нүктесі және b түзуі арқылы жазықтығын жүргіземіз. 4. жазықтығында А нүктесі арқылы b түзуіне паралелль b1 түзуін жүргіземіз. 5. а1 және b1түзулерінен бір-бірден М және N нүктелерін таңдап аламыз. 6. А, М, N нүктелері арқылы іздеген а жазықтығын жүргіземіз. Дәлелдеу. 1. Салуымыз бойыншаа1 ажәнеа1 . яғни,а . 2. b1 b -бұл салуымыз бойынша жәнеb1 . Демек,b . 3.A a1жәнеA  b1 . сонда, A.Зерттеу. А нүктесінің а немесе b түзулерінде жатуына тәуелсіз есептің әрқашан шешімі болады. Егер а мен b түзулері паралелль болмаса, онда есептің бір ғана шешімі бар болады. Ал көп шешуі бар болады.а bболса, онда есептің сансыз мысал. Барлық төрт қабырғасы және қарама-қарсы екі қабырғасының орталарын қосатын кесінді берілген жағдайда ABCD төртбұрышын салу керек (14-сурет). D СC114-суретШешуі. ABCD — ізделген тертбұрыш, EF — АВ және DC қабырғаларының орталарын қосатын кесінді болсын. AD қабырғасын параллель жылжытыпED1және ВС қабырғасын параллель жылжытыпEC1 жағдайына келтіреміз, сондаDD1  AE ,DD1AE ; CC1  BE ,CC1BE , DF  CF — бұлар шарт бойынша, демек,DD1 F  FC1C(екі қабырғасы және олардың арасындағы бұрышы бойынша тең). Бұл үшбұрыштардың теңдігінен DFD1  CFC1шығады. Демек,D1 , F жәнеC1 — нүктелері бір түзудің бойында жатады.D1 EC1үшбұрышында екі қабырғасы мен үшінші медианасы белгілі болғанда оны салуға болады. Бұдан соң үш қабырғасы бойынша DD1 F жәнеFCC1үшбұрыштарын салып,DAED1 , жәнеBEC1C параллелограмдарын салуға болады. Бұдан соң A және В нүктелері анықталады. Салу.DEC1үшбұрышынD1 E  ADжәнеCE1  BC, сондай-ақ EF медианасы бойынша саламыз. Бұл үшін ең алдымен 2EF,ED1 ,EC1 , үш қабырғасы бойынша үшбұрыш салып, оны параллелограмға дейін толықтырамыз. Осы параллелограмның жартысыD1 EC1 — үшбұрышы болады. Қабырғалары1 DC2және1 AB2болатын өзара тең үшбұрыштарD1 F жәнеFC1кесінділеріне салынады. Бұлар арқылы D және С нүктелерін саламыз.DAED1жәнеBEC1Cпараллелограмдарын салып, А және В нүктелерін табамыз.Дәлелдеу. ABCD төртбұрышы — ізделген төртбұрыш, себебі ол есептің барлық шарттарын қанағаттандырады. DF және FC бір түзудің бойында жатыр, себебіDFD1  CFC1 жәнеDF1 және C1 Fбір түзудің бойьшда жатыр. Зерттеу.ED1C1 үшбүрышын салу үшін2EF  AD  BCжәне 2EF AD  BCшарттарының орындалуы қажетті, алDD1 FжәнеFCC1 — салу үшінD F  1 ( AB CD) және D FAB  CDшарттары орындалуы 1 2 1қажетті. Егер бұл шарттар орындалса, онда есептің бір ғана шешімі бар болады.Әдістемелік ұсыныстар: 1. Кеңістікте салуға берілген есепті шешуге кірісуден бұрын материалдың теориялық жағын меңгеріп алу қажет. 2. Салу есептерін шешуге кіріскенде алдымен қарапайым салулардан бастап шешу керек. 3. Есептер шешу кезінде әсіресе көрнекі құралдар мен модельдерді (нұсқаларды) пайдаланудың ерекше маңызы бар. 4. Негізгі салуларды дәл орындау керек: а) кеңістіктегі нүктенің орнын анықтау; б) берілген екі нүкте арқылы түзу жүргізу; в) бір түзудің бойында жатпайтын үш нүкте арқылы жазықтық жүргізу; г) түзу мен жазықтықтың қиылысу нүктесін табу; д) әрбір жазықтықта барлық планиметриялық салулардың орындалуы; е) егер өзін анықтайтын элементтер берілсе, онда геометриялық дене салу.Егер кеңістікте салуға берілген есептердегі негізгі амалдар, яғни онда ұсақ бөліктерге бөлінетін негізгі қарапайым салулар түгел орындалса, онда кеңістіктегі кез-келген геометриялық салу орындалады деп есептеледі. 1   ...   6   7   8   9   10   11   12   13   ...   16

Практикалық сабақтар

Математиканы оқыту әдістемесі пәні бойынша тест сұрақтары

Тест сұрақтарының жауаптары

Әдебиеттер

Алпысов Ақан Қанапияұлы

аламыз:

    1. Сабақтың мақсатының қойылуы;

    2. Жаңа материалмен таныстыру;

    3. Жаңа материалды бекіту, а) ақпаратты еске түсіру және сондағы әрекеттің тәсілі; б) білімін көтеру, оны шығармашылықпен қолдана білу;

    4. Оқушының білім, білік дағдысын тексеру;

    5. Алынған білімді жүйелеу және жалпылау (тақырып, тарау бойынша).

Сабақтың құрылымын талдағанда сабақтың мақсаты басты роль атқарады. Сабақтың мақсаты оның құрылымын анықтайды және сабақтың кезеңдерінің арасындағы байланысты орнатады, сабақтың бір бүтіндігін қалыпқа келтіреді.

Сабаққа қойылатын ең негізгі талаптардың бірі – оның мақсаттылығы. Математиканы оқыту әдістемесі жөніндегі әдебиеттерден ең алғаш сабақтың дидактикалық мақсатттары, бұдан соң математиканың мазмұны арқылы тәрбие берудің, оқушы білімін жетілдіруді көздейтін негізгі мақсаттар туралы ұсыныстарды табуға болады. Сабақтың мақсаты оқушыға түсінікті болуы керек. Сабақтың ұйымдастырылуы оқушыны қызықтырып, белсендігін арттыруы тиіс. Мектеп мұғалімі оқушының танымдық белсенділігін арттыруға жеткілікті сабақ ұйымдастыруы керек. Сабақтың жалпы мақсаты, мазмұны мен құрылымы жаңа сабақтарда байқалуы керек.

Сабаққа қойылатын екінші бір басты талап сабақ мазмұнын дұрыстап орналастыра білу. Математика сабақтарындағы ең маңызды мәселе–оның мазмұны. Қарастырып отырған пәнді логикалық тұрғыда терең бейнелеу керек. Тек математика сабағының мазмұны арқылы білім, білік, дағды қалыптасады және математикалық фактілерді, математикалық әдістерді қолдану арқылы сабақ мазмұнын дамытуға болады. Егер сабақты

жаңа тақырыпты түсіндіру жоспарланған болса, онда сабақты дедуктивтік ой қорыту жолымен дәлелдеу, талдау жасап, оқушылардың қаншалықты меңгергенін білу үшін мұғалім мақсатты жұмыстармен айналысады. Сабақ мазмұнының барлық түрлерін жоспарлы, белгілі жүйеде оқыту керек. Сондықтан әрбір сабақтың негізгі мазмұнын білу арқылы, солардың төңірегінде материалдар жинастыру керек.

Сабаққа қойылатын үшінші талап – сабаққа қажетті жабдықтар мен әдістерді, оқытудың тәсілдерін, сабақ кезінде тәрбие берудің тиімді әдістерін таңдап алу. Сабаққа аса қажетті жабдықтарды, әдістер мен тәсілдерді таңдап алу мұғалімнің шеберлігіне байланысты жұмыс. Мұғалім жұмысының табысты болуы оқушылардың жалпы дайындығына, олардың жеке ерекшелігіне, сабаққа керекті жабдықтардың тиімділігіне және оқу материалының ерекшелігін мұғалім қаншалықты дәрежеде айта білді, оқу жұмысында танымдық мәселелерді оқушылар алдына қаншалықты дәрежеде қоя білуіне тікелей байланысты. Оқыту жұмысында кез келген құрал- жабдық, дәріс, тәсілдердің ешбірі универсалдық сипатта бола алмайтынын ескеру керек. Тек бір әдіс не тәсілдің өзін ғана пайдалану нәтиже бермейді.


«Математика» пәнінің ерекшелігі сонда, оқытуда негізгі мәселе көрнекі жабдықтар әр түрлі формада қолданылуы тиіс. Сондықтан сабақта көрнекі және техникалық құралдарды кешенді түрде пайдаланып және кітаппен істелетін жұмыс түрлерін көбейту керек. Математикалық ұғымдардың абстракциялық сипаты оқушылардың түсінуін қиындатады. Бұл қиындықты пәндік модельдер, графиктік, таңбалы т.б. модельдер арқылы жоюға болады. Математика сабақтарында әр түрлі күрделі мәселелерді жай түрде баяндағанда суреттер мен сызбалар қарастырылатын негізгі ұғымды сипаттайтын көрнекіліктер қолданылады.

Сабаққа қойылатын төртінші талап – оқушылардың оқу әрекетін әр түрлі формада ұйымдастыру. Өз бетінше білім алу, өзін-өзі бақылау, бағалау, оқу әрекетін жекеше ұйымдастыруды дамыту талабын алға қояды және сабақтарда оқушылар көрнекіліктерді қолданады және топтық жұмыс формасын пайдаланады. Ғылыми–техникалық прогресстің жедел дамуы, ғылым мен өндірістің біте қайнасуы ой еңбегін одан әрі жетілдіруді талап етеді. Қазіргі таңда оқушының жалпы даму деңгейі, оның ойлауы мен өздігінен білім алу іскерлігі, алған білімін іс жүзінде қолдана алуы ерекше маңызға ие. Сондықтан ғылым негіздерін оқытып үйреткенде оқушылардың шығармашылық белсенділігін дамыту, олардың өздігінен білім алу іскерлігін қалыптастыру және оны одан әрі өрістету, алған білімін практикада қолдана білу машықтарын шыңдау бүгінгі таңда зор міндет болып табылады. Бұл өзекті мәселені жүзеге асыру күллі оқыту әдістері мен оқу–тәрбие жұмысын барынша жетілдіруді талап етеді. Осыған орай соңғы жылдары мектептерде оқу конференциялары мен семинарлары кең тарай бастады. Конференциялар мен семинарлар оқушылардың өздігінен ізденіп, білім қорларын байытатыны, ғылыми фактілерді талдап, қорытуға бейімделетіні, басқалардың ой–пікірлеріне сын көзбен қарауға икемделетіні іс жүзінде дәлелденіп отыр. Оқу конференциялары мен семинарлары оқушылардың

оқулық және қосымша әдебиеттерді өздігінен оқып үйренуді, ізденуді қажет етеді. Сондықтан оқушыларда ғылыми әдебиеттерді өздігінен оқып үйрену машықтарын қалыптастыру алдымен, олардың оқып шыққан материалдың ең маңыздыларын, ең негізгілерін атап көрсетуге, сол мәселелерді өз сөздерімен айтып беруге, бірнеше әдебиеттен оқығандарын қорытуға баулыған жөн. Оқу конференциялары сабақ кестесі бойынша бөлінген уақытта бүкіл сыныпта өткізіледі. Оқу конференцияларында математикалық ұғымдардың даму тарихы математикалық әдістердің тәжірибеде қолданылуы және т.б. оқулық немесе ғылыми әдебиеттерден оқушылар өздігінен оқып түсіне алатын материалды қарастырған жөн. Белгілі бір тақырып немесе тарау бойынша білімді жүйелеуге және қорытындылауға арнайы конференциялар ұйымдастыруға болады. Конференцияларды ұйымдастыру және өткізу кезеңдерінде мұғалім:



  1. конференцияның мерзімін, қарастырылатын мәселелер мен олардың міндеттерін анықтайды;

  2. оқушыларға арналған әдебиеттерді іріктейді;

  3. оқушыларға таңдаған тақырыптарын үйлестіріп, баяндамалардағы басты мәселелер бойынша кеңес береді;

  4. оқушылардың даярлығын ұдайы тексеріп, тиісті нұсқаулар береді.

Семинар сабақтары оқушылардың өздігінен білім алуына, еңбек сүйгіштікке тәрбиелеуге, пәнге ынтасын арттыруға, ғылыми әдебиеттермен өздігінен жұмыс істеу іскерліктерін дамытуға көмектеседі. Семинарлардың мақсаты алған білімді қайталау, жүйелеу және есеп шығаруға қолдана білу іскерліктерін дамыту болып табылады. Мұнда мұғалім негізінен мақсатын, міндетін және жоспарын түсіндіреді, реферат даярлайтын оқушыларға жеке тапсырмалар мен кеңестер береді. Өткізілу тәсілдеріне қарай семинарлар әңгімелеу, рефераттар мен баяндамаларды талқылау, есеп шығару қамтылатын аралас типті және комплексті болып бөлінеді. Комплекс сипаттағы семинардың негізгі мақсаты – математиканың басқа пәндермен байланысын қорытындылау мен жүйелеу.

    1. Оқу процесінің тиімділігі, сабақтың жүйелігі мен сапасы, бағдарламаның орындалу барысы, білімнің тереңдігі бүкіл оқу-тәрбие жұмысын дұрыс жоспарлауға байланысты.

Сабаққа дайындалу – күрделі де қиын жұмыс, сабақ өз деңгейінде өту үшін мұғалімнің әдістемеден жақсы теориялық білімі және дұрыс дайындығы мен сабақты жоспарлай алатын дағдысы болу керек.

Сабақ жоспарын жасау, сабақты ұйымдастыру мен бағдарламалық материалды оқыту мұғалімнен қажырлықты талап етеді. Сондықтан әрбір мұғалім сабақты жоспарлаудың тиімді тәсілдерін меңгеруі тиіс. Оқушыны білімді, білікті, тәрбиелі азамат етіп қалыптастыру бірітіндеп, сабақ сайын, күнбе–күн жүзеге асып отыратыны сөзсіз. Мұғалімнің сабаққа дайындығы үш кезеңнен тұрады.

      1. мұғалімнің жаңа оқу жылына дайындығы.

      2. мұғалімнің тақырыптық дайындығы.

      3. мұғалімнің күнделікті сабаққа дайындығы.

Мұғалімнің жаңа оқу жылына дайындығы. Алдымен мұғалім жаңа оқу жылының басында оқу бағдарламасымен, мектеп оқулығындағы оқу материалымен танысып, оқушыларды неге оқытатыны анықтайды. Оқу материалының мазмұнының жобасы бойынша жылдық жоспарын жасайды. Оқу процесінің жылдық жоспарында оқу материалы тоқсандарға бөлініп, тақырыптарды оқытуға бөлінетін сағат саны мен уақыты белгіленеді, қайталау мерзімі мен тәсілдері анықталады. Оқушыға, мұғалімге керекті әдебиет тізімін жасайды, оқулықтарға талдау жасап, алдағы жұмыстарды жоспарлайды. Оқу жылының басында кабинетті жабдықтайды, бағдарламаға сай оқулықтар, дидактикалық материал, жұмыс дәптері, есептер жинағы таңдап алынады.


Мұғалімнің тақырыптық дайындығы. Тақырыптық жоспар нәтижесінде әрбір тақырыптың өзекті мәселелерін сабақтарға бөліп, қайталаудың түрлерін, бақылау жұмыстары мен үй тапсырмаларының мазмұнын анықтайды. Тақырыптық жоспар әр сабаққа арналған дидактикалдық материалды, көрнекі құралдар мен техникалық құралдарды уақытында даярлауға мүмкіндік береді, өткізілетін сабақ пен сыныптан тыс жұмыстардың сипатын анықтауға көмектеседі. Сабақтың тақырыптық жоспары оқушылардың жас ерекшеліктеріне және басқа да факторларға сай өңделіп, жетілдіріліп отырады.

Мұғалімнің күнделікті сабаққа дайындығы – күнделікті сабақ жоспарын жасау. Сабақ жоспарын жасау сабақ мазмұнын, баяндау ретін, өздігінен орындайтын жұмыстарды, үйге берілетін тапсырмаларды, сабақта қойылатын сұрақтарды т.с.с. мұғалімнің алдын ала болжауына көмектеседі. Әрбір сабақтан соң, оның кемшіліктері мен жетістіктеріне тиісті қорытынды жасап, мұғалім өз ойларын қағазға түсіріп отыруы дұрыс. Бұл кейінгі сабақта қолданылатын әдістердің тиімділігін арттыруға септігін тигізеді.

Мұғалімнің сабаққа даярланудың алғашқы сатысы оның мақсатын анықтау болып табылады. Сабақтың мақсаты бағдарлама мен оқулықтың тиісті тақырыбын зерттеу негізінде анықталып, сабақтың мазмұнын, оқыту әдістерін және бүкіл сабақтың барысын жасауға әсер етеді. Сабақ мақсатына мынадай талаптар қойылады:

  1. Сабақ мақсаты: оқушылар қандай білімді меңгеруі керек (білімділік мақсаты), қандай іскерліктер қалыптастырылды (дамытушылық мақсаты), сабақтың оқушыларды тәрбиелеуге қосқан үлесі қандай (тәрбиелік мақсаты) тәрізді мәселелерге жауап беруі тиіс.

  2. Сабақ мақсаты өте дәл тұжырымдалуға тиіс, яғни сабақта қандай білім, іскерлік пен біліктілік қалыптастырылатыны, тәрбиелік қызметінің мәні белгіленуі керек.

Сабаққа даярлаудың келесі кезеңі оның мазмұнын анықтау. Оқулықтарда оқу материалының тақырыптарға бөлінуі, оқушылардың танымдық қызметін ұйымдастыру мен бағыт-бағдар беру тәсілдерінің оқулықта көрініс табуы бұл кезеңді іске асыруға жол ашады. Сонымен бірге оқу бағдарламасында берілген оқушылар үлгеруге тиісті білім мен іскерліктердің тізімі, пәнаралық байланыстар мазмұнының белгіленуі

мұғалімнің сабаққа даярлануын едәуір жеңілдетеді. Сабақта өтілетін материалдың мазмұны мен мақсаты, оқушылардың дайындық дәрежесі, олардың жас ерекшеліктері, мұғалімнің іс-тәжірибесі оқытудың әдістері мен құралдарын анықтайды. Мұнда алдымен қандай материал оқушыларға дайын күйінде берілетінің, қайсысы оқушылардың өздігінен орындауына тапсырылатынын анықтаған жөн. Егерде оқушыларды теориялық материалмен алғаш таныстырғанда, олардың тірек болар білімдері мен іскерліктері жоқ болса, онда әңгімелеу, түсіндіру, дәріс т.б. баяндау әдістерін пайдаланады. Бұл жағдайда оқушылардың қызметі білім мен іскерлікті жаңғырту сипатында болады. Ал оқушылардың тиісті білім қоры бар болса, эвристикалық тәсілді қолдануға болады және т.с.с.


Мұғалімнің сабақ жоспарында көрсеткен мәселелері оқушылардың кезекті білім, білік, дағды алуына және олардың ойын, инциативасының, шығармашылығының дамуына әсер етуі тиіс. Сабақ жоспарын жасағанда әр сыныптың нақты ерекшелігі ескеріліп, оқушылардың зерделі жұмысын ұйымдастырады.

Төменде күнделікті сабақ жоспарын құрудың бір түрі келтірілген (ұсынылған).

    1. Сабақтың тақырыбы.

    2. Сабақтың мақсаты.

    3. Сабақтың түрі.

    4. Сабақтың көрнекілігі.

    5. Сабақтың барысы: а) ұйымдастыру кезеңі, б) үй тапсырмасын тексеру,

в) жаңа сабақты түсіндіру, г) сабақты бекіту, д) сабақтың қорытындысы, е) үйге тапсырма.

Әр сабаққа, тек мектеп оқулықтарымен ғана шектелмей, басқа да кітаптардан әр түрлі есептерді, алынған білімді баянды ету үшін нақты сұрақтарды таңдап ала білу қажет. Оқушыларға қойылатын сұрақтарды дәл, нақты тұжырымды етіп қою және оқушыларды ықыласпен тыңдап, оның жауабын дәл сезініп, дұрыс баға беру керек.

    1. Математика сабағын талдау. Өзінің немесе әріптесінің жұмысына бақылау жасау үшін мұғалім сабақты талдай білуі керек. Сабаққа талдау жасау арқылы өзінің немесе әріптесінің қызметіндегі кемшіліктер мен жетістіктерді бақылап, өзі үйренеді. Математика сабағын талдау мынадай түрде жүргізілуі мүмкін.

  1. Жалпы мағлұматтар: сынып, тақырып, мақсаттар, сабақтың түрі, құрылымы.

  2. Сабақтың басталуы (ұйымдастыру кезеңі): формасы, ұзақтығы, тиімділігі.

  3. Үй жұмысын тексеру: оның мақсаты. Қалай тексерілді? Үй жұмысын тексерудің ұзақтығы, тиімділігі.

  4. Сұрақтар мен тапсырмалардың қойылуы мен мазмұны. Бағалар қалай қойылды? Қойылған бағаның оқушының білім деңгейі мен біліктілігіне сәйкестігі. Мұғалімнің дұрыс және бұрыс жауаптарға әсері.

  5. Оқушылардың алдына сабақтың мақсаты қойылды ма? Жаңа материалдың мазмұны мен көлемі. Баяндау әдісі. Көрнекі құралдарды қолдану. Оқулықпен жұмыс, оның қажеттілігі мен тиімділігі. Сабақтың негізгі маңызды жерін бөліп көрсету.

  6. Оқығанды тиянақтау. Оның қорытындысы неде? Сұрақтардың, есептердің таңдап алынуы және олардың көлемі, есептермен жұмыс жасау әдісі. Өзіндік жұмыс болды ма? Оның ұйымдастырылуы, мақсаты.

  7. Келесі сабаққа тапсырма. Оның мақсаты. Мазмұны мен көлемі. Оқушылардың тапсырманы түсінігіне мұғалімнің көзі жетті ме? Тапсырманы орындау сабақтың мазмұны және әдістемесімен қамтамасыз етілді ме?

  8. Мұғалім сабақты қалай аяқтады. Сабақ жоспарының орындалуы. Мақсатқа қол жетуі.

  9. Қорытындылар мен ұсыныстар.