Файл: Отчет о прохождении учебной практики по профессиональному модулю пм. 01 Организация и выполнение работ по эксплуатации и ремонту электроустановок.docx

ВУЗ: Не указан

Категория: Отчет по практике

Дисциплина: Не указана

Добавлен: 08.11.2023

Просмотров: 583

Скачиваний: 32

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Схемы электроснабжения собственных нужд гэс

  Технологический процесс получения электроэнергии на ГЭС значительно проще, чем на тепловых и атомных электростанциях, поэтому требует значительно меньшего числа механизмов с. н.

Подсчет нагрузок с. н. ГЭС ведется конкретно для каждого проекта, так как эти нагрузки зависят не только от мощности уста­новленных агрегатов, но и от типа электростанции (приплотинная, деривационная, водосливная и др.).

В отличие от тепловых электростанций на ГЭС отсутствуют круп­ные электродвигатели напряжением 6 кВ, поэтому распределение электроэнергии осуществляется на напряжении 0,4/0,23 кВ. Пита­ние с. н. производится от трансформаторов, присоединенных к:

  • токопроводам генератор — трансформатор без выключателя со стороны генераторного напряжения;

  • шинам генераторного напряжения;

  • выводам НН автотрансформатора связи;

  • местной подстанции.

Целесообразность установки отдельных трансформаторов, при­соединенных к РУ 220 кВ и более, должна быть обоснована.

Потребители с. н. ГЭС делятся на агрегатные (маслонасосы МНУ, насосы откачки воды с крышки турбины, охлаждение глав­ных трансформаторов и др.) и общестанционные(насосы технического водоснабжения, насосы откачки воды из отсасыва­ющих труб, дренажные и пожарные насосы, отопление, освеще­ние, вентиляция, подъемные механизмы и др.).


Часть этих потребителей являются ответственными (техничес­кое водоснабжение, маслоохладители трансформаторов, масло­насосы МНУ, система пожаротушения, механизмы закрытия зат­воров напорных трубопроводов). Нарушение электроснабжения этих потребителей с. н. может привести к повреждению или отключе­нию гидроагрегата, снижению выработки электроэнергии, разру­шению гидротехнических сооружений. Такие потребители долж­ны быть обеспечены надежным питанием от двух независимых источников [5].

На рис. 9 приведен пример схемы питания с. н. мошной ГЭС.



Рисунок 9 - Схема питания с. н. мощной ГЭС с общими питающими трансформаторами

            Агрегатные с. н. питаются от отдельных секций 0,4/0,23 кВ. Часть потребителей общестанционных с. н. может быть значительно уда­лена от здания ГЭС, поэтому возникает необходимость распреде­ления электроэнергии на более высоком напряжении (3,6 или 10 кВ). В этом случае предусматриваются главные трансформаторы с. н. T1T2 и агрегатные T5T8. Трансформаторы T9T12 служат для питания общестанционных нагрузок. Резервное питание сек­ций 6 кВ осуществляется от местной подстанции, оставшейся после строительства ГЭС. Резервирование агрегатных с. н. осуществляет­ся от резервных трансформаторов Т3, Т4. Ответственные потреби­тели с.н., отключение которых может принести к отключению гидроагрегата или снижению его нагрузки, присоединяются к раз­ным секциям с. н.

Мощность трансформаторов агрегатных с. н. выбирается по сум­марной нагрузке с. н. соответствующих агрегатов. Главные трансформаторы(T1T2) выбираются с учетом взаимного резервиро­вания и с возможностью их аварийной перегрузки.

При большом числе и значительной единичной мощности аг­регатов находит применение схема раздельного питании агрегат­ных и общестанционных потребителей. Агрегатные сборки 0,4 кВ получают питание от индивидуальных трансформаторов, присое­диненных отпайкой к энергоблоку. Резервирование их осуществ­ляется от трансформаторов, присоединенных к РУ с. н. 6—10 кВ, которое получает питание от автотрансформаторов связи между РУ ВН и РУ СН. На рисунке 10 приведена однолинейная схема главных электрических соединений подстанций предприятия.





Рисунок 10 - Однолинейная схема главных электрических соединений подстанций
Основной задачей турбогенератора является трансформация механической энергии паровой либо газовой турбины в электрическую. Осуществляется это при большой скорости вращения ротора (от 3000 до 15000 оборотов в минуту).

Турбогенераторы – это довольно непростой тип электрических агрегатов, в котором сочетаются:

  • проблемы с мощностью;

  • электромагнитные характеристики;

  • размеры;

  • охлаждение и нагрев;

  • статическая и динамическая прочность.

Исполняются данные устройства горизонтально и имеют возбуждающую обмотку с неявно выраженными полюсами, которая находится на самом роторе. А на статоре располагается трехфазная обмотка.

Принцип работы турбогенератора

Механическая энергия самой турбины превращается в электрическую. Это возможно благодаря вращающемуся магнитному полю, создаваемого с помощью непрерывного тока, протекающему в обмотке самого ротора. Это способствует и формированию трехфазного переменного тока, а также напряжению в статоре (его обмотках). Крутящий момент от двигателя передается на ротор генератора.

Данная характеристика турбогенератора позволяет при обращении ротора образовывать магнитный момент, который и создает электрический ток в его обмотках. Благодаря системе возбуждения в агрегате обеспечивается поддержка постоянного напряжения на всех режимах функционирования данного устройства.

Циркуляция воды в теплообменниках и газоохладителях происходит при помощи насосов, которые располагаются вне самого турбогенератора.

Применяются турбогенераторы на атомных и тепловых электростанциях.

В зависимости от мощности данного оборудования, его разделяют на три основные категории:

  • 2,5 – 32 МВт;

  • 60 – 320 МВт;

  • мощность турбогенераторов более чем 500 МВт.

Также турбогенераторы бывают:

  • двухполюсные с частотой вращения от 1500 до 1800 оборотов в минуту;

  • четырёхполюсные (300 – 3600 об/мин).

Паровой турбогенератор

Паровой турбогенератор обладает повышенной надежностью своей работы, при этом развивая проектную мощность постоянно на протяжении многих часов работы. Такие современные устройства могут обладать мощностью до 1300 МВт. Зачастую, паровые турбогенераторы могут работать параллельно. Передача мощности при этом может осуществляться в одну электрическую цепь.


Тепловая экономичность электростанции, в которой установлен паровой турбогенератор, напрямую зависит от видов и параметров теплового цикла использования тепла образовавшегося пара, а также от самого оборудования и его характеристик.

Зачастую, паровая турбина турбогенератора, обладающая небольшой мощностью, монтируется в промышленных котельных, там, где используется мазута или твердое топливо. Турбины тут функционируют в качестве дросселирующих устройств редукционно-охладительных установок, на разнице величины давления от котла до промышленного отбора, либо же теплообменника. /p>

Мощность турбогенератора, работающего в данной отрасли, находится в пределах от 250 киловатт до 5 Мегаватт. Такая установка позволяет получить очень дешевую электрическую энергию. Она получается в восемь раз дешевле покупной. А все оборудование, при работе больше чем 5000 часов в год, сможет быстро окупить себя, уже за три года.

Паровая турбина турбогенератора маленькой нагрузки может применяться не только лишь в качестве привода электрогенератора, но также и для приведения в действия устройств, необходимых для работы котельных любого назначения.

С татор турбогенератора

Он изготавливается из корпуса, в котором имеется сердечник с углублениями для установки в них обмотки. В основу сердечника входят слои, которые набираются из нескольких листов стали (электротехнической), дополнительно имеющих лаковое покрытие. Между этими слоями имеются специальные каналы для вентиляции (порядка 5 – 10 сантиметров).

В месте, где находятся углубления, обмотка закрепляется при помощи клиньев, а ее передняя часть укреплена на специальных кольцах. Располагается она с конца статора. Сам сердечник помещен в прочный сварной корпус, изготовленный из стали.

Ротор турбогенератора

Чтобы сформировалась высокая прочность, ротор турбогенератора выпускают в виде толстого цилиндра из сплошной стальной заготовки. В таком случае используют углеродистую сталь, как правило, марки «35» (в случаи малой нагрузки данного агрегата).

Ротор турбогенератора оснащен двумя рядами отверстий, расположенных вдоль первых обмоточных отверстий. Необходимо это, чтобы закрепить там специальные балансировочные грузы. Длина ротора турбогенератора существенно меньше его активных размеров.


При частоте вращения порядка 3000 оборотов в минуту, ротор изготавливают диаметром в 1,2 метра. Обмотку делают из специальной полосовой меди с дополнительной присадкой серебра. Она удерживается в пазах благодаря дюралевым клиньям.

Для того, чтобы повысить тепловую стойкость ротора от воздействия на него обратных токов, сверху изоляции обмотки укладываются короткозамкнутые кольца, которые изготавливают в виде двухслойного медного гребенка.

Для повышения единичной мощности охлаждение турбогенератора делают более интенсивным, без существенного увеличения габаритов. Если нагрузка таких устройств превышает 50 Вт, то используют жидкое либо водородное охлаждение его обмоток.

Охлаждение турбогенераторов

Турбогенераторы с воздушным охлаждением

Изготавливаются такие агрегаты нагрузкой в 2,5; 4; 6; 12 и 20 МВт. Конструкция таких устройств осуществляется закрытым типом. Самовентиляция обеспечивается по закрытому циклу. Вращение воздуха в турбогенераторе происходит благодаря вентиляторам, которые закрепляются с обеих сторон внутри ротора.

Для того, чтобы избежать проникновения пыли вовнутрь, на валу имеются специальные воздушные уплотнители. А утечка воздуха компенсируется благодаря его засосу из внешней среды.

Устройства с водородным охлаждением

Это устройства, мощность которых составляет 60 и 100 Мегаватт.

Охлаждение турбогенератора, а именно роторных обмоток, исполняется напрямую водородом. Статор охлаждается косвенно и обдает сварную оболочку, которая газонепроницаема и неразъемная.

Агрегаты, охлаждаемые водой

Обмотки ротора и статора устройств такого типа охлаждаются при помощи непосредственной подачи воды. Сталь сердечника статора отстужается при помощи специально предназначенных охладителей, изготовленных из силумина. Воздух, который заполняет сам генератор, охлаждается водой.

О бъединенное охлаждение

Такие устройства с водородно-водяным охлаждением бывают мощностью 160 – 1200 Мегаватт. А количество оборотов в минуту составляет 3000. Такие агрегаты имеют прямое охлаждение обмотки статора при помощи дистиллированной воды, а ротора – водородом. Наружная их поверхность охлаждается при помощи только лишь водорода.

Корпус таких агрегатов изготавливается цельным, сварным, газонепроницаемым, неразъемным, а также, его внутренняя поверхность обладает дополнительными поперечными кольцами жесткости, которая способствует закреплению сердечника. С двух сторон статор закрывается наружными пластинами.