Файл: Девятая. Проектирование асинхронных машин.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.11.2023

Просмотров: 393

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Обычное исполнение двойной клетки — сварное с раздельными кольцами. Рабочую обмотку (стержни и короткозамыкающие коль­ца) в большинстве случаев изготовляют из меди, а пусковую — из латуни. Латунь для пусковой клетки применяют из-за больших по сравнению с медью удельного сопротивления и теплоемкости.

Рис. 9.39. Замыкающие кольца двухклеточных

короткозамкнутых роторов асинх­ронных двигателей:

а — общие; б — раздельные
Увеличение теплоемкости пусковой клетки особенно важно для машин с длительными тяжелыми пусками, за время которых потери в роторе могут нагреть пусковую обмотку до недопустимо высокой с температуры.

В современных машинах распространено также двухклеточное исполнение роторов с литыми обмотками (см. рис. 9.38, л). В таких конструкциях и пусковую, и рабочую клетки заливают одним металлом. Замыкающие кольца — общие, прилегающие к торцам ротора (рис. 9.39).

Выбирая ту или иную конструкцию клетки, форму и размерные соотношения стержней, следует исходить из требований к пусковым характеристикам двигателей и возможности размещения паза на зубцовом делении ротора, при котором обеспечивается нормальный уровень индукции в зубцах и ярме. Кроме того, необходимо учитывать влияние размерных соотношений пазов на индуктивное сопротивление обмотки ротора. При любой конфигурации паза уменьшение ширины верхней части стержней и увеличение их высоты приводят к увеличению пускового момента, но одновременно увеличивается коэффициент магнитной проводимости паза и растет индуктивное сопротивление обмотки ротора. Это в некоторых случаях может играть положительную роль — как фактор, ограничивающий пусковые токи, но в то же и время увеличение индуктивного сопротивления ротора приводит к ухудшению коэффициента мощности при номинальном режиме работы и к снижению Мmах.

То же характерно для двигателей с двухклеточными роторами, имеющими большие пусковые моменты, но низкие коэффициенты мощности при номинальном режиме, так как поток пазового рассеяния в перемычке между стержнями рабочей и пусковой клеток достигает

больших значений. Поэтому для обеспечения высоких энергетических показателей номинального режима следует, прежде всего, ориентироваться на пазы ротора с широкой верхней частью — грушевидные (см. рис. 9.38, а). Пазы других форм (прямоугольные, фигурные) или двойную клетку применяют только в том случае, когда пусковые характеристики двигателя с ротором, имеющим грушевидные пазы, не удовлетворяют




Рис. 9.40. Трапецеидальные пазы короткозамкнутого ротора:

а — полузакрытые; б — закрытые
требованиям, поставленным в техническом задании.

В большинстве асинхронны; двигателей с короткозамкнутым ротором с высотой оси вращения h ≤ 250 мм выполняют трапецеидальные пазы и литую обмотку на роторе (рис. 9.40). Размерные соотношения пазов b1, b2 и h1 обеспечивают параллельность боковых граней зубцов. В двигателях с h < 160 мм пазы имеют узкую прорезь со следующими размерами: bш = 1,0 мм и hш = 0,5 мм при высоте оси вращения h < 100 мм; bш = 1,5 мм и hш = 0,75 мм при высоте вращения А = 112...132 мм. В двигателях с h = 160...250 мм выполняют трапецеидальные закрытые пазы (рис. 9.40, б) с размерами шлица bш = 1,5 мм и hш = 0,7 мм. Высота перемычки над пазом в двигателях с 2р > 4 выполняется равной h'ш =0,3 мм, в двухполюсных двигателях h'ш = 1,0...1,5 мм.

Размеры паза ротора рассчитывают исходя из требуемого сечения стержня qс, полученного по (9.68), допустимой индукции в зубце и из условия постоянства ширины зубца, т. е. параллельности его граней.

По допустимой индукции (см. табл. 9.12) определяют ширину зубца ротора:

(9.75)
После чего рассчитывают размеры паза (рис. 9.40):
(9.76)
; (9.77)
. (9.78)
После расчета размеры паза следует округлить до десятых долей миллиметра и уточнить площадь сечения, стержня qc:
qc = (9.79)
Условия высококачественной заливки пазов алюминием требуют, чтобы диаметр закругления нижней части паза в двигателях c h ≤ 132 мм был не менее 1,5...2 мм, в двигателях с h ≥ 160 мм — не менее 2,5...3 мм.

В связи с округлениями результатов расчета необходимо просчитать ширину зубцов в сечениях b'Z2 и b'Z2 по окончательно принятым размерам паза:
(9.80)
(9.81)
При небольшом расхождении размеров b'Z2 и b"Z2 в расчете магнитного напряжения зубцов ротора используется средняя ширина зубца bz2 = (b'

z2 + b"z2) / 2. При заметных расхождениях расчет прово­дят так же, как для трапецеидальных зубцов ротора (см. ниже).

Расчетная высота зубца принимается равной:
hz2 = hп – 0,1 b2. (9.82)
В двигателях с высотой оси вращения h = 280...355 мм выполня­ют закрытые пазы ротора: при 2р ≥ 4 — трапецеидальные, сужаю­щиеся в верхней части, и при 2р = 2 — лопаточные (рис. 9.41).

Для расчета размеров трапецеидальных сужающихся в верхней части пазов целесообразно использовать графоаналитический метод, аналогичный описанному в § 6.5 для пазов всыпной обмотки статора. Наименьшая допустимая ширина зубца bzimm находится по Вz2mах (см. табл. 9.12). На построенном в достаточно большом масштабе эскизе зубцового деления ротора, изменяя b2 и bп, графически определяют размеры паза по заданной площади сечения стержня qc, при которых Bz2max остается в допустимых пределах. Высота перемычки над пазом принимается равной h'ш = 0,5 мм. Диаметр закругления верхней части паза должен быть не менее b1 ≥ 3,5...4 мм. По­сле построения определяют ширину зубца ротора:

(9.83)

(9.84)
Расчетная высота зубца
hz2 = hп - 0,1b2. (9.85)


Рис. 9.41. Характерные размеры зубцовой зоны короткозамкнутого ротора:

а — с трапецеидальными пазами; б — с лопаточными пазами


В лопаточных пазах (рис. 9.41, б) высоту верхней части паза hв для получения наибольшего эффекта вытеснения тока во время пуска при литой алюминиевой обмотке выполняют равной 15...16 мм. Размеры нижней части лопаточных стержней рассчитывают, исходя из сечения стержня qc и постоянства ширины зубцов ротора:
(9.86)
где bz2н — ширина зубца на нижнем участке, определяемая по допус­тимой индукции в зубцах ротора (см. табл. 9.12); h'ш — высота перемычки над пазом. Для двигателей с 2р = 2 принимают h' ш - 1...2 мм.

Ширина верхней части стержня
bВ = (0,5...0,65) b. (9.87)
Требуемое сечение нижней части стержня

qс.н = qcqc.в. . (9.88)
где сечение верхней части стержня
qс.в. = bв (hв – 0,11 bв). (9.89)
Диаметр закругления нижней части стержня
(9.90)
Наименьший допустимый размер b = 3...4 мм.

Если по (9.90) b < 3 мм, следует или уменьшить сечение стерж­ня (увеличить плотность тока в нем), или несколько увеличить ин­дукцию в зубцах ротора.

Расстояние между центрами закруглений нижней части стержня
h = (b - b) (9.91)
После округления полученных размеров до десятых долей миллиметра уточняют площадь сечения стержня ротора: qc.в. по (9.89) и
qc.н = (9.92)
qc = qc + qc(9.93)
Размеры зубцов в верхних и нижних частях рассчитывают раздельно.

Размеры верхней части зубца:
BZв max = (9.94)
bZв min = (9.95)
где h'в = hв + h'ш.

Размеры нижней части зубца:

(9.96)

(9.97)
Расчетная высота участков зубца:

верхнего

hZв = h'в ; (9.98)

нижнего
aZн = hн - 0,1b. (9.99)

В короткозамкнутых роторах с обмоткой из вставных алюминиевых шин выполняют открытые прямоугольные пазы (рис. 9.42). Размеры паза находят исходя из допустимой ширины зубца bZ2min, определенной по допустимой Bz2max (см. табл. 9.12). Ширина паза
(9.100)
где Sп2 — полная площадь поперечного сечения паза, которую предварительно берут равной:
Sп2 ≈ 1,1 qс.
Из двух возможных значений bп, полученных по (9.100), следует выбрать значение, удовлетворяющее требованиям конструкции. Ширина алюминиевой шины должна быть меньше ширины паза в штампе на припуск на сборку сердечника Δb
П (см. табл. 9.14). Размеры паза окончательно определяют после выбора стандартного сечения и размеров алюминиевой шины (табл. П 3.7).

Высота паза
hП = hс + ΔhП + hш, (9.101)
где ΔhП определяют по табл. 9.14; hш — высота шлица, в роторах такой конструкции вы­полняется равной 4 мм;

высота стержня
hc = qc / bc.
Наибольшая и наименьшая ширины зубцов при прямоугольных пазах ротора определяются по (9.61) и (9.63). Расчетная высота зубца принимается равной высоте паза:
hz = hп.
9.8.3. Сердечники роторов
Сердечники роторов асинхронных двигателей при D2 < 990 выполняют с непосредственной посадкой на вал без промежуточной втулки. В двигателях с высотой оси вращения h ≤ 250 мм применяют посадку сердечников на гладкий вал без шпонки. В двигателях больших размеров сердечники крепят на валу с помощью шпонки. Ее диаметр ротора превышает 990 мм, то сердечник шихтуют из от­дельных сегментов и крепят на втулке ротора или на продольных ребрах, приваренных к валу (оребренные валы) (см. гл. 8).

В большинстве двигателей с высотой оси вращения h ≥ 250 выполняют аксиальные каналы в целях некоторого улучшения условий охлаждения ротора и снижения его массы и момента инерции.


Рис. 9.42. Характерные размеры зубцовой зоны

короткозамкнутого рото­ра с обмоткой из

встав­ных прямоугольных алю­миниевых шин



Рис. 9.43. Аксиальные вентиляционные

каналы в сердечнике ротора:

а — расположение каналов в один ряд(mк2 = 1);

б — расположение каналов в два ряда (mк2 = 2)


Аксиальные каналы (рис. 9.43) могут быть расположены в одном ряду (mк2 = 1) или при больших диаметрах ротора в двух рядах (mк2 = 2). Число аксиальных каналов в сердечнике ротора обычно колеблется от 9 до 12, а их диа­метр (dк2) — в пределах от 15 до 30 мм. Большие диаметры вы­полняют в роторах двигателей с большим числом полюсов. При расположении каналов в два ряда их диаметры уменьшают.

Радиальные каналы в сердечнике ротора, так же как и в статоре, выполняют лишь при длине сердечника, превышающей 0,25...0,3 м. В таких роторах необходимо предусматривать также и выполнение аксиальных каналов, которые служат для прохода охлаждающего воздуха к радиальным каналам.