Файл: Девятая. Проектирование асинхронных машин.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.11.2023

Просмотров: 395

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Наличие каналов, их диаметр и расположение оказывают влияние, на магнитное напряжение ярма ротора и должны учитываться при расчете магнитной цепи.

Внутренний диаметр сердечника ротора Dj при непосредственной посадке на вал равен диаметру вала DВ и может быть определен по формуле
DBkBDa. (9.102)
Значения коэффициента kB даны в табл. 9.19.
Таблица 9.19. Значения коэффициента


h, мм

50...63

71. ..250

280...355

400.. .500

2p

2...6

2...8

2

4...12

4

6

8...12

kB

0,19

0,23

0,22

0,23

0,2

0,23

0,25


Если сердечник ротора насажен на втулку или оребренный вал, то внутренний диаметр Dj, м, определяется исходя из допустимой индукции в ярме ротора (см. § 9.9) с использованием следующих вы­ражений:
hj = Ф/ (2Bjlст2kc); Dj = D2 – 2 (hп2 + hj).

9.9. РАСЧЕТ МАГНИТНОЙ ЦЕПИ
Расчет магнитной цепи проводят для режима холостого хода двигателей, при котором для асинхронных машин характерно относительно сильное насыщение стали зуб­цов статора и ротора. Как отмечено в гл. 4, насыщение зубцовых зон приводит к упло­щению кривой поля в воздушном зазоре (рис. 9.44). Пересечение реальной (уплощен­ной) кривой поля 2 в зазоре с основной гармонической 1 происходит в точках, отстоящих от оси симметрии одного полупериода кривой на угол 35°. Поэтому за расчетную индукцию принимается не амплитудное значение, а Врасч = Вmax cos ψ ≈ Вmax cos 35° ≈ 0,82 Bmax. По Врасч следует


Рис. 9.44. Распределение индукции в воздушном

за­зоре асинхронного двига­теля:

1 — ненасыщенного (синусои­дальная кривая);


2 — насы­щенного (уплощенная кривая)
определить Нрасч по основной кривой намагничивания и увеличить затем результат в k = 1/ 0,82 раз, приведя напряженность к амплитудному значению индукции. Для воздушного зазора, имеющего линейную зависимость Н = f (B), эта операция равносильна непосредственному определению магнитного напряжения зазора по Вδ. При определе­нии магнитных напряжений участков магнитной цепи с нелинейны­ми магнитными характеристиками влияние уплощения учитывается специальными кривыми намагничивания для зубцов и ярм асинх­ронных двигателей, построенными по основной кривой намагничи­вания с учетом указанных зависимостей. При этом принимают
аδ = 2/ π ≈ 0,637 и kв = π / (2 ) ≈ 1,11.
Марку электротехнической стали рекомендуется выбирать в за­висимости от высоты оси вращения проектируемого асинхронного двигателя:


Марка стали.........

2013

2212

2214

2312

2412

Высота оси вращения, мм.

45...250

160...250

71...250

280...355

280...560





Расчет магнитной цепи проводят в следующей последовательно­сти.
9.9.7. Магнитное напряжение воздушного зазора
Расчет магнитного напряжения воздушного зазора, как и всех последующих участков магнитной цепи, рекомендуется проводить на два полюса машины, т.е. вдоль замкнутой силовой линии потока полюса. Возможен также расчет на один полюс, при этом получен­ные по расчетным формулам данного параграфа магнитные напря­жения участков цепи Fi, необходимо уменьшить в 2 раза, а при опре­делении намагничивающего тока (см. ниже) суммарное магнитное напряжение всей цепи соответственно увеличить в 2 раза. Окончате­льный результат от этого не меняется.

Магнитное напряжение воздушного зазора, А,
Fδ=

(9.103)
где Bδ — индукция в воздушном зазоре, Тл, рассчитанная по (9.23) по окончательно принятому числу витков в фазе обмотки w1 и обмоточ­ному коэффициенту kоб1 определенному для принятой в машине об­мотки; δ – воздушный зазор, м; kδ – коэффициент воздушного зазора, рассчитанный по (4.15) или (4.16); μ0 — магнитная проницае­мость: μ0 = 4 • 10-7 Гн/м.
9.9.2. Магнитное напряжение зубцовой зоны статора
Общая формула для расчета магнитного напряжения зубцовой зоны статора
FZ1 = 2hz1 Hz1, (9.104)
гдеhz1 — расчетная высота зубца статора, м; Hz1 — расчетная напряженность поля в зубце, А. Напряженность поля в зубце определяют по кривым намагничивания для зубцов принятой при проектирова­нии марки стали (см. Приложения 1 и 2).

Расчетную высоту зубцов hz1 и расчетную напряженность поля Hz1 определяют по-разному в зависимости от конфигурации зубцов, связанной с формой пазов статора.


Зубцы с параллельными гранями (в статорах с грушевидными или трапецеидальными пазами по рис. 9.29). Индукция в зубце
BZ1 = (9.105)
где hZ1 — расчетная ширина зубца, м, определяется по формулам табл. 9.15; если размеры b'Z1 и b"Z1 одинаковы, то bz1 = b'z1 = b"z1; если размеры b'Z1 и b"z1 различаются менее чем на 0,5 мм, то bz1 = 0,5(b'z1 + b"z1). При различии, превышающем 0,5 мм, следует либо скорректировать размеры паза, либо определить расчетную напряженность поля Hz1 как для зубцов с изменяющейся площадью поперечного сечения (см. ниже); kс1 — коэффициент заполнения сталью сердечника статора (см. табл. 9.13).

Расчетная напряженность поля, А/м, Hz1 = f (Bz1).

Расчетная высота паза hz1 определяется по табл. 9.17.

Магнитное напряжение зубцовой зоны

FZ1 = 2hZ1HZ1. (9.105a)
Зубцы с изменяющейся площадью поперечного сечения (в статорах с прямоугольными пазами по рис. 9.28). Расчетная высота зубца hZ1 = hП. Расчетная напряженность поля
Hz1 = (HZ1max + 4HZ1ср + HZ1min ) / 6, (9.106)
где Hz1max, Hz1min и Hz1ср — напряженности поля в наименьшем, наибольшем и среднем сечениях зубца, определяемые по индукциям в этих сечениях : BZ1max, BZ1min и Bz1cp = 0,5(BZ1max + ВZ1min).

Индукции Вz1max и Вz1min рассчитывают по (9.105), подставляя в формулу вместо размера bz1 соответственно наименьшее и наибольшее значения ширины зубца, м, рассчитанные по формулам табл. 9.15.

Магнитное напряжение зубцовой зоны, А,
Fz1 = 2hz1 Hz1. (9.107)
Практикуют также определение расчетной напряженности по индукции в поперечном сечении зубца на расстоянии 1/3 высоты от его наиболее узкой части. В этом случае в (9.105) вместо b
z1 под­ставляют значение bz1/3 (см. табл. 9.15). Расчетная напряженность поля в зубце Hz1 = Н z1/3 = f B z1/3 .

Если индукция в каком-либо одном или в нескольких сечениях зубца окажется больше 1,8 Тл, то необходимо учесть ответвление части потока зубцового деления Фtz = Bδ tz1 lδ в паз, при котором действительная индукция в зубце уменьшается по сравнению с рас­считанной по (9.105). Метод определения действительной индукции изложен в гл. 4. При его использовании коэффициенты kП рассчиты­вают для каждого из сечений зубца, в котором индукция превышает 1,8 Тл, и соответствующего ему по высоте сечения паза. По значе­нию kП и расчетной индукции определяют действительную индук­цию в данном сечении зубца.

В зубцах с параллельными гранями при индукции выше 1,8 Тл коэффициент kП рассчитывают по соотношению площадей попереч­ных сечений зубца и паза на середине высоты зубца. В зубцах с из­меняющейся площадью поперечного сечения при определении рас­четной напряженности по B z1/3 коэффициент kП рассчитывают по соотношению площадей поперечных сечений зубца и паза на высоте 1/3 наиболее узкой части зубца. Это приводит к некоторой погреш­ности в определении расчетной напряженности поля в зубце, но при средних уровнях индукций, характерных для зубцовой зоны стато­ра, эта погрешность не оказывает заметного влияния на результаты расчета.
9.9.3. Магнитное напряжение зубцовой зоны ротора
Расчет магнитного сопротивления зубцовой зоны ротора зави­сит от формы пазов и типа ротора: фазный ротор или короткозамкнутый с одной обмоткой (беличьей клеткой) или короткозамкнутый ротор с двумя обмотками — рабочей и пусковой (ротор с двойной беличьей клеткой). К последнему типу относят также одноклеточ­ные короткозамкнутые роторы с одной беличьей клеткой, имеющие фигурные пазы — лопаточные или колбообразные, которые при расчете рассматривают как роторы с двойной беличьей клеткой.

Магнитное напряжение зубцовой зоны фазного и короткозамкнутого роторов с одной беличьей клеткой с прямоугольными или с тра­пецеидальными пазами (по рис. 9,32, а, б; 9.40 и 9.41, а). Общая фор­мула расчета магнитного напряжения
Fz2