Добавлен: 03.02.2019

Просмотров: 21687

Скачиваний: 19

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
background image

The Electromagnetic Spctrum 11-17

Table 11.1.6 Applications of Interest in the Microwave Band (up to 40 GHz):

Application

Frequency

Aero Navigation

0.96–1.215 GHz

GPS Down Link

1.2276 GHz

Military COM/Radar

1.35–1.40 GHz

Miscellaneous COM/Radar

1.40–1.71 GHz

L-Band Telemetry

1.435–1.535 GHz

GPS Down Link

1.57 GHz

Military COM (Troposcatter/Telemetry)

1.71–1.85 GHz

Commercial COM & Private LOS

1.85–2.20 GHz

Microwave Ovens

2.45 GHz

Commercial COM/Radar

2.45–2.69 GHz

Instructional TV

2.50–2.69 GHz

Military Radar (Airport Surveillance)

2.70–2.90 GHz

Maritime Navigation Radar

2.90–3.10 GHz

Miscellaneous Radars

2.90–3.70 GHz

Commercial C-Band SAT COM Down Link

3.70–4.20 GHz

Radar Altimeter

4.20–4.40 GHz

Military COM (Troposcatter)

4.40–4.99 GHz

Commercial Microwave Landing System

5.00–5.25 GHz

Miscellaneous Radars

5.25–5.925 GHz

C-Band Weather Radar

5.35–5.47 GHz

Commercial C-Band SAT COM Up Link

5.925–6.425 GHz

Commercial COM

6.425–7.125 GHz

Mobile TV Links

6.875–7.125 GHz

Military LOS COM

7.125–7.25 GHz

Military SAT COM Down Link

7.25–7.75 GHz

Military LOS COM

7.75–7.9 GHz

Military SAT COM Up Link

7.90–8.40 GHz

Miscellaneous Radars

8.50–10.55 GHz

Precision Approach Radar

9.00–9.20 GHz

X-Band Weather Radar (& Maritime Navigation Radar)

9.30–9.50 GHz

Police Radar

10.525 GHz

Commercial Mobile COM (LOS & ENG)

10.55–10.68 GHz

Common Carrier LOS COM

10.70–11.70 GHz

Commercial COM

10.70–13.25 GHz

Commercial Ku-Band SAT COM Down Link

11.70–12.20 GHz

DBS Down Link & Private LOS COM

12.20–12.70 GHz

ENG & LOS COM

12.75–13.25 GHz

Miscellaneous Radars & SAT COM

13.25–14.00 GHz

Commercial Ku-Band SAT COM Up Link

14.00–14.50 GHz

Military COM (LOS, Mobile, &Tactical)

14.50–15.35 GHz

Aero Navigation

15.40–15.70 GHz

Miscellaneous Radars

15.70–17.70 GHz

DBS Up Link

17.30–17.80 GHz

Common Carrier LOS COM

17.70–19.70 GHz

Commercial COM (SAT COM & LOS)

17.70–20.20 GHz

Private LOS COM

18.36–19.04 GHz

Military SAT COM

20.20–21.20 GHz

Miscellaneous COM

21.20–24.00 GHz

Police Radar

24.15 GHz

Navigation Radar

24.25–25.25 GHz

Military COM

25.25–27.50 GHz

Commercial COM

27.50–30.00 GHz

Military SAT COM

30.00–31.00 GHz

Commercial COM

31.00–31.20 GHz

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

The Electromagnetic Spectrum


background image

11-18 Broadcast Transmission Systems

Gamma Ray Band

The gamma ray band is sub-divided into the following segments:

Primary gamma rays, approximately 1 Kev up to 1 Mev (circa 300 pm down to 300 fm), circa
1 EHz up to 1000 EHz

Secondary gamma rays, approximately 1 Mev up to 

∞ (300 fm down to 0 m), 1000 EHz up to

Secondary gamma rays are created from collisions of high energy cosmic rays with particles in
the Earth’s upper atmosphere.

The primary gamma rays are further sub-divided into the following segments:

Soft gamma rays, approximately 1 Kev up to circa 300 Kev (circa 300 pm down to circa 3
pm), circa 1 EHz up to circa 100 EHz

Hard gamma rays, approximately 300 Kev up to 1 Mev (circa 3 pm down to 300 fm), circa
100 EHz up to 1000 EHz

Gamma rays are essentially very energetic X rays. The distinction between the two is based on
their origin. X rays are emitted during atomic processes involving energetic electrons; gamma
rays are emitted by excited nuclei or other processes involving sub-atomic particles.

Gamma rays are emitted by the nucleus of radioactive material during the process of natural

radioactive decay as a result of transitions from high energy excited states to low energy states in
atomic nuclei. Cobalt 90 is a common gamma ray source (with a half-life of 5.26 years). Gamma
rays are also produced by the interaction of high energy electrons with matter. “Cosmic” gamma
rays cannot penetrate the Earth’s atmosphere.

Applications of gamma rays are found both in medicine and in industry. In medicine, gamma

rays are used for cancer treatment, diagnoses, and prevention. Gamma ray emitting radioisotopes
are used as tracers. In industry, gamma rays are used in the inspection of castings, seams, and
welds.

11.1.3 Bibliography

Collocott, T. C., A. B. Dobson, and W. R. Chambers (eds.): Dictionary of Science & Technology.

Handbook of Physics, McGraw-Hill, New York, N.Y., 1958.

Judd, D. B., and G. Wyszecki: Color in Business, Science and Industry, 3rd ed., John Wiley and

Sons, New York, N.Y.

Kaufman, Ed: IES Illumination Handbook, Illumination Engineering Society.

Lapedes, D. N. (ed.): The McGraw-Hill Encyclopedia of Science & Technology, 2nd ed.,

McGraw-Hill, New York, N.Y.

Norgard, John: “Electromagnetic Spectrum,” NAB Engineering Handbook, 9

th

 ed., Jerry C. Whi-

taker (ed.), National Association of Broadcasters, Washington, D.C., 1999.

Norgard, John: “Electromagnetic Spectrum,” The Electronics Handbook, Jerry C. Whitaker

(ed.), CRC Press, Boca Raton, Fla., 1996.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

The Electromagnetic Spectrum


background image

The Electromagnetic Spctrum 11-19

Stemson, A: Photometry and Radiometry for Engineers, John Wiley and Sons, New York, N.Y.

The Cambridge Encyclopedia, Cambridge University Press, 1990.

The Columbia Encyclopedia, Columbia University Press, 1993.

Webster’s New World Encyclopedia, Prentice Hall, 1992.

Wyszecki, G., and W. S. Stiles: Color Science, Concepts and Methods, Quantitative Data and

Formulae, 2nd ed., John Wiley and Sons, New York, N.Y.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

The Electromagnetic Spectrum


background image

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

The Electromagnetic Spectrum


background image

11-21

Chapter

11.2

Propagation

William Daniel, Edward W. Allen, Donald G. Fink

11.2.1 Introduction

The portion of the electromagnetic spectrum currently used for radio transmissions lies between
approximately 10 kHz and 40 GHz. The influence on radio waves of the medium through which
they propagate is frequency-dependent. The lower frequencies are greatly influenced by the char-
acteristics of the earth’s surface and the ionosphere, while the highest frequencies are greatly
affected by the atmosphere, especially rain. There are no clear-cut boundaries between frequency
ranges but instead considerable overlap in propagation modes and effects of the path medium.

In the U.S., those frequencies allocated for television-related use include the following:

54–72 MHz: TV channels 2–4

76–88 MHz: TV channels 5–6

174–216 MHz: TV channels 7–13

470–806 MHz: TV channels 14–69

0.9–12.2 GHz: nonexclusive TV terrestrial and satellite ancillary services

12.2–12.7 GHz: direct satellite broadcasting

12.7–40 GHz: direct satellite broadcasting

11.2.2 Propagation in Free Space

For simplicity and ease of explanation, propagation in space and under certain conditions involv-
ing simple geometry, in which the wave fronts remain coherent, may be treated as ray propaga-
tion
. It. should be kept in mind that this assumption may not hold in the presence of obstructions,
surface roughness, and other conditions which are often encountered in practice.

For the simplest case of propagation in space, namely that of uniform radiation in all direc-

tions from a point source, or isotropic radiator, it is useful to consider the analogy to a point
source of light, The radiant energy passes with uniform intensity through all portions of an imag-
inary spherical surface located at a radius from the source. The area of such a surface is 4

πr

2

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Source: Standard Handbook of Audio and Radio Engineering