Добавлен: 03.02.2019

Просмотров: 21667

Скачиваний: 19

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
background image

5-17

Chapter

5.2

Direct-Radiator Loudspeakers

Katsuaki Satoh

5.2.1

Introduction

The diameter of a speaker diaphragm normally ranges between a few centimeters and dozens of
centimeters when high-amplitude sound must be produced. The following sections outline the
basic principles involved in direct-radiator loudspeakers.

5.2.2

Piston Source in an Infinite-Plane Baffle

An actual diaphragm has many different oscillation modes, and its motion is complicated. On the
assumption—for easier analysis—that the diaphragm is rigid, radiation impedance and directiv-
ity are considered for typical circular and rectangular shapes. As shown in Figure 5.2.1, part of a
circular rigid wall is oscillating at a given velocity v exp (j

ωt). The upper part of this circular pis-

ton is subdivided into the micro area d

s

, and when a micro part is oscillated by the piston, the

total reaction force subjected from the medium side is calculated. Thus, the radiation impedance
Z

R

 of the diaphragm is found from the ratio of this reaction force to the diaphragm’s oscillating

speed. This shows how effectively sound energy from the diaphragm is used. Radiation imped-
ance in the circular diaphragm is shown in the following equation, and the results in Figure 5.2.2.

(5.2.1)

Where:
J

1

= Bessel function of the first order

S

1

 = Struve function

Directional characteristics of the circular diaphragm are shown in the following equation, and

the results in Figure 5.2.3.

(5.2.2)

Z

R

πa

2

pC

(

) 1

J

1

2ka

(

)

ka

-------------------

j

S

1

2ka

(

)

ka

--------------------

+

=

D

θ

( )

2J

1

ka sin 

θ

(

)

ka sin  

θ

---------------------------------

=

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Source: Standard Handbook of Audio and Radio Engineering


background image

5-18 Sound Reproduction Devices and Systems

Where:
D(

θ) = ratio between sound pressures whose angles θ are in 0 and θ directions

θ = perpendicular on the surface center
k = number of waves
a = radius, m

Rectangular impedance is shown in Equation (5.2.3), directional characteristics in Equation

(5.2.4), and the respective calculation results in Figure 5.2.4.

(5.2.3)

Where:
v = nondimensional frequency
p = 

R v,

σ

(

)

1

2/

πv

2

(

) 1 cos vq

( ) vq  sin (vq ) cos vp

( ) cos v/p

(

)

+

+

[

]

=

 2/

π

(

pI

1

v,

σ

(

)

[

I

1

v,1/

σ

(

)/p

+

+

X v,

σ

(

)

2/

πv

2

(

) sin vq

( ) vq  cos  vq

( ) v p 1/p

+

(

) sin vp

( ) sin v/p

(

)

+

[

]

=

2/

π

(

pI

2

v,

σ

(

I

2

v,1/v

(

)/p

+

[

]

v

k S

=

q

σ 1/σ

+

(

)

=

σ

Figure 5.2.1

 Piston on an infinite rigid wall.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Direct-Radiator Loudspeakers


background image

Direct-Radiator Loudspeakers 5-19

Figure 5.2.3

 Directional characteristics of a circular diaphragm.

Figure 5.2.2

 Radiation impedance for a rigid circular diaphragm in an infinite baffle as a function

of 

k a = 2

π

a/

λ

.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Direct-Radiator Loudspeakers


background image

5-20 Sound Reproduction Devices and Systems

(5.2.4)

Where:
D(

θ

1

,

θ

2

) = ratio between sound pressures in 0 and 

θ

1

/

θ

2

 directions (

θ

1

 = 

θ

2

= 0 is a perpendicu-

lar of the center on the rectangular surface) 

λ = wavelength, m
d

1,2 

= length of each side of rectangle, m

Radiation impedance shows how effectively sound energy is radiated, while directional gain is

used to show how expanding sound energy is radiated in space. The ratio of total acoustic energy
W is found by integrating the sound strength from that on a spherical surface a distance r from
the sound source with the sound strength that exists on the same point from the nondirectional
sound source that emits the same energy. This is expressed in decibels:

(5.2.5)

(5.2.6)

Where:
W = total acoustic energy, W
r = distance in the maximum sound pressure direction for standardization, m
P

max

 = sound pressure at distance r, N/m

2

DI = directivity index (directional gain), dB

5.2.2a

Baffle Shape and Acoustic Characteristics

In the preceding section an infinite baffle was discussed, but such a baffle cannot be put to prac-
tical use. Conse

quently, it is necessary to precheck the types of characteristics that can be

obtained when a definite baffle is installed in a speaker. Because the sounds radiated to the front
baffle and reflected to the rear are opposite in phase, the difference in distance between the

I

1,2

1

1/

ξ t

2

(

)

1

2

cos

sin

vt

( )

ζ 1 2

(

)

ξ 1/ξ

+

(

) 1 2

(

)

=

1,2, subscripts of I, 

cos for 1 and sin for 2

=

D

θ

1

θ

2

(

)

sin 

φ

1

φ

1

-------------

sin

φ

2

φ

2

------------

=

φ

1,2

πd

1,2

λ

-------------sin

φ

1,2

=

ξ

σor σ

=

W

r

2

pC

-------

P

·

r,

θ,φ

(

)

2

sin

2

θ

θ

d

( ) φ

d

(

0

π

0

2

π

=

DI

10 log

4

πr

2

W

-----------

P

·

max

2

pC

------------------

=

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Direct-Radiator Loudspeakers


background image

Direct-Radiator Loudspeakers 5-21

passes of sound through the rear and front baffles from a speaker is canceled by the front and rear
sounds of one-half even multiples and added to each other by the sounds of odd multiples.

Therefore, high and low sound pressures occur. To avoid this, the speaker is installed off cen-

ter, resulting in a baffle with a complicated shape. One side should be a few times longer than the
wavelength. However, this shape does not produce favorable characteristics, and this type of baf-
fle is not often used in practical applications. Typical baffle characteristics are shown in Figures
5.2.5 and 5.2.6.

Figure 5.2.4

 Diaphragm characteristics: (

a) radiation impedance for a rigid rectangular dia-

phragm, (

b) directivity function for a rigid square diaphragm. Note that in (a) solid lines, which have

been calculated by using the finite element method (FEM), are instructive for practical designs.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Direct-Radiator Loudspeakers