ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 10.11.2023

Просмотров: 186

Скачиваний: 8

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


К этому периоду и относится появление "серебра Девиля" в качестве экспоната на Всемирной выставке. Быть может, ее устроители и отнесли алюминий к металлам широкого потребления, но, увы, от этого он не стал доступнее. Правда, уже тогда передовые люди понимали, что пуговицы и кирасы — лишь незначительный эпизод в деятельности алюминия. Впервые увидев алюминиевые изделия, Н.Г. Чернышевский с восторгом сказал: "Этому металлу суждено великое будущее! Перед вами, друзья, металл социализма". В его романе "Что делать?", вышедшем в 1863 году, есть такие строки: "…Какая легкая архитектура этого внутреннего дома, какие маленькие простенки между окнами, — окна огромные, широкие, во всю вышину этажей… Но какие эти полы и потолки? Из чего эти двери и рамы окон? Что это такое? Серебро? Платина?… Ах, знаю теперь, Саша показывал мне такую дощечку, она была легка, как стекло, и теперь уже есть такие серьги, броши; да, Саша говорил, что рано или поздно алюминий заменит собой дерево, может быть и камень. Но как же все это богато. Везде алюминий и алюминий… Вот в этом зале половина пола открыта, тут и видно, что он из алюминия…".

Но когда писались эти пророческие строки, алюминий, по-прежнему оставался главным образом ювелирным металлом. Интересно, что даже в 1889 году, когда Д.И. Менделеев находился в Лондоне, ему в знак признания его выдающихся заслуг в развитии химии был преподнесен ценный подарок — весы, сделанные из золота и алюминия.

Сент-Клер Девиль развил бурную деятельность. В местечке Ла-Гласьер он построил первый в мире алюминиевый завод. Однако в процессе плавки завод выделял много вредных газов, которые загрязняли атмосферу Ла-Гласьера. Местные жители, дорожившие своим здоровьем, не пожелали жертвовать им ради технического прогресса и обратились с жалобой к правительству. Завод пришлось перенести сначала в предместье Парижа, а позднее на юг Франции.

Однако к этому времени для многих ученых уже стало ясно, что, несмотря на все старания Сент-Клер Девиля, его метод не имеет перспектив. Химики разных стран продолжали поиски. В 1865 году русский ученый Н.Н. Бекетов предложил интересный способ, который быстро нашел применение на алюминиевых заводах Франции и Германии.

Важной вехой в истории алюминия стал 1886 год, когда независимо друг от друга американец Чарльз Мартин Холл и француз Поль Луи Туссен Эру разработали электролитический способ производства этого металла[2]. Идея была не нова: еще в 1854 году немецкий ученый Бунзен высказал мысль о получении алюминия электролизом его солей. Но прошло более тридцати лет, прежде чем эта мысль получила практическое воплощение. Поскольку электролитический способ требовал большого количества энергии, первый в Европе завод для производства алюминия электролизом был построен в Нейгаузене (Швейцария) близ Рейнского водопада — дешевого источника тока.


И сегодня, спустя целое столетие, без электролиза немыслимо получение алюминия. Именно это обстоятельство и заставляет ученых ломать голову над весьма загадочным фактом. В Китае есть гробница известного полководца Чжоу Чжу, умершего в начале III века. Сравнительно недавно некоторые элементы орнамента гробницы были подвергнуты спектральному анализу. Результат оказался настолько неожиданным, что анализ пришлось несколько раз повторить. И каждый раз беспристрастный спектр неопровержимо свидетельствовал о том, что сплав, из которого древние мастера выполнили орнамент, содержит 85 % алюминия. Но каким же образом удалось получить в III веке этот металл?

Ведь с электричеством человек тогда был знаком разве что по молниям, а они вряд ли соглашались принять участие в электролитическом процессе. Значит, остается предположить, что в те далекие времена существовал какой-то другой способ получения алюминия, к сожалению, затерявшийся в веках.

К концу прошлого столетия производство алюминия резко возросло и, как следствие, значительно снизились цены на этот металл, еще не так давно считавшийся драгоценным. Разумеется, для ювелиров он уже не представлял никакого интереса, зато сразу приковал к себе внимание промышленного мира, находившегося в преддверии больших событий: начинало бурно развиваться машиностроение, становилась на ноги автомобильная промышленность и, что особенно важно, вот-вот должна была сделать первые шаги авиация, где алюминию предстояло сыграть важнейшую роль.

В 1893 году в Москве вышла книга инженера Н. Жукова "Алюминий и его металлургия", в которой автор писал: "Алюминий призван занять выдающееся место в технике и заместить собой, если не все, то многие из обыденных металлов…". Для такого утверждения имелись основания: ведь уже тогда были известны замечательные свойства "серебра из глины". Алюминий — один из самых легких металлов: он примерно втрое легче меди или железа. По теплопроводности и электропроводности он уступает лишь серебру, золоту и меди. В обычных условиях этот металл обладает достаточной химической стойкостью. Высокая пластичность алюминия позволяет прокатывать его в фольгу толщиной в несколько микрон, вытягивать в тончайшую, как паутина, проволоку; при длине 1000 метров она весит всего 27 граммов и умещается в спичечной коробке. И лишь прочностные характеристики алюминия оставляют желать лучшего. Это обстоятельство и побудило ученых задуматься над тем, как сделать металл прочнее, сохранив все его полезные качества. Издавна было известно, что прочность многих сплавов зачастую гораздо выше, чем чистых металлов, входящих в их состав. Вот почему металлурги и занялись поисками таких компаньонов для алюминия, которые, вступив с ним в союз, помогли бы ему окрепнуть. Вскоре пришел успех. Как не раз бывало в истории науки, едва ли не решающую роль при этом сыграли случайные обстоятельства. Впрочем, расскажем все по порядку. Однажды (это было в начале XX века) немецкий химик и металлург Альфред Вильм приготовил сплав, в который, помимо алюминия, входили различные добавки: медь, магний, марганец. Прочность этого сплава была выше, чем у чистого алюминия, но Вильм чувствовал, что сплав можно еще более упрочить, подвергнув его закалке. Ученый нагрел несколько образцов сплава примерно до 600 °C, а затем опустил их в воду. Закалка заметно повысила прочность сплава, но, поскольку результаты испытаний различных образцов оказались неоднородными, Вильм усомнился в исправности прибора и точности измерений.



Несколько дней исследователь тщательно выверял прибор. Забытые им на время образцы лежали без дела на столе, и к тому моменту, когда прибор был вновь готов к работе, они оказались уже не только закаленными, но и запыленными. Вильм продолжил испытания и не поверил своим глазам: прибор показывал, что прочность образцов возросла чуть ли не вдвое.

Вновь и вновь повторял ученый свои опыты и каждый раз убеждался, что его сплав после закалки продолжает в последующие дни становиться все прочнее и прочнее. Так было открыто интересное явление — естественное старение алюминиевых сплавов после закалки

Сам Вильм не знал, что происходит с металлом в процессе старения, но, подобрав опытным путем оптимальный состав сплава и режим термической обработки, он получил патент и вскоре продал его одной немецкой фирме, которая в 1911 году выпустила первую партию нового сплава, названного дюралюминием (Дюрен — город, где было начато промышленное производство сплава). Позже этот сплав стали называть дуралюмином.

В 1919 году появились первые самолеты из дуралюмина. С тех пор алюминий навсегда связал свою судьбу с авиацией. Он по праву заслужил репутацию "крылатого металла", превратив примитивные деревянные "этажерки" в гигантские воздушные лайнеры. Но в те годы его еще не хватало, и многие самолеты, главным образом легких типов, продолжали изготовлять из дерева.

В нашей стране производством алюминиевых сплавов занимался тогда лишь Кольчугинский завод по обработке цветных металлов, который выпускал в небольших количествах кольчугалюминий — сплав, по составу и свойствам сходный с дуралюмином. Из этого сплава молодой авиаконструктор А.Н. Туполев изготовил сначала аэросани, которые успешно выдержали испытания на бескрайних заснеженных полях. После такой предварительной проверки кольчугалюминию предстояло подняться в воздух: в 1924 году из него был построен первый советский металлический самолет "АНТ-2".

На повестку дня стал вопрос о создании мощной алюминиевой промышленности. В начале 1929 года в Ленинграде на заводе "Красный Выборжец" были проведены опыты по получению алюминия. Руководил ими П.П. Федотьев — ученый, с именем которого связаны многие страницы истории "крылатого металла". 27 марта 1929 года удалось получить первые 8 килограммов металла. "Этот момент, — писал впоследствии Федотьев, — можно считать возникновением производства алюминия в СССР на волховской энергии и целиком из материалов собственного приготовления". В ленинградской печати отмечалось тогда, что "первый слиток алюминия, представляющий музейную ценность, должен быть сохранен как памятник одного из крупнейших достижений советской техники". Образцы алюминия, полученного в дальнейшем на "Красном Выборжце", и изделия из него были, преподнесены от трудящихся Ленинграда V Всесоюзному съезду Советов.


Успешное проведение промышленных опытов позволило приступить к сооружению Волховского и Днепровского алюминиевых заводов. В 1932 году вступил в строй первый из них, а спустя год — второй.

В этот же период значительные природные запасы алюминиевых руд были обнаружены на Урале. Любопытна предыстория их открытия. В 1931 году молодой геолог Н.А. Каржавин в музее одного из уральских рудников обратил внимание на экспонат, считавшийся железной рудой с низким содержанием железа. Геолога поразило сходство этого образца с бокситами — глинистой горной породой, богатой алюминием. Подвергнув минерал анализу, он убедился, что "бедная железная руда" является отличным алюминиевым сырьем. Там, где был найден этот образец, начались геологические поиски, которые вскоре увенчались успехом. На базе найденных месторождений был построен Уральский алюминиевый завод, а спустя несколько лет (уже в годы войны) — Богословский, который выдал свою первую продукцию в исторический День Победы — 9 мая 1945 года.

Любопытно, что в годы второй мировой войны, когда некоторые воюющие государства испытывали нехватку бокситов — основного алюминиевого сырья, Италия, например, получала алюминий из… лавы Везувия. Примерно тогда же богатые залежи бокситов были обнаружены на острове Ямайка, причем произошло это при довольно забавных обстоятельствах. Один из жителей острова надумал как-то заняться разведением помидоров. Высадил он на своей плантации рассаду и стал ждать урожая. Но не тут-то было: вся рассада зачахла' и быстро погибла. Повторная попытка закончилась для любителя томатов столь же плачевно. Горько сетуя на явную несправедливость со стороны фортуны, незадачливый овощевод решил докопаться до причины неудач и послал пробу своей не слишком щедрой почвы на анализ в одну из лабораторий США с просьбой объяснить, почему на ней не растут помидоры. Ответ не заставил себя долго ждать. Смысл его сводился к следующему: "Какие же помидоры может родить земля, состоящая на 99 % из бокситов?" Прошло всего несколько лет, и на землях Ямайки вместо помидоров выросли горнодобывающие предприятия, продукция которых поступает сегодня на заводы многих стран, производящих алюминий.

Потребность в этом металле постоянно растет. Главным заказчиком алюминиевой промышленности по-прежнему остается авиация: алюминий занимает первое место среди металлов, применяемых в самолетостроении. С освоением космоса "крылатый металл" обрел поклонников и среди конструкторов ракетной техники. Из алюминиевых сплавов была выполнена оболочка первого советского искусственного спутника Земли. В 1960 году США запустили спутник "Эхо-1", предназначенный для отражения радиосигналов. Это был огромный, диаметром 30 метров, шар,
изготовленный из полимерной пленки, покрытой тончайшим слоем алюминия. Несмотря на внушительные размеры, спутник весил всего 60 килограммов. Алюминиевые сплавы, надежно работающие в широком температурном интервале — от абсолютного нуля до 200 °C, были выбраны в качестве конструкционного материала для баков с жидким водородом и жидким кислородом американских ракет "Сатурн".

Фольга из чистейшего алюминия служила флуоресцирующим экраном, установленным на одном из спутников для исследования испускаемых Солнцем заряженных частиц. Когда американские космонавты Нейл Армстронг и Эдвин Олдрин высадились на Луну, они расстелили на ее поверхности лист такой же фольги: в течение двух часов она подвергалась воздействию газов, излучаемых Солнцем. Покидая Луну, космонавты захватили с собой эту фольгу и образцы лунных пород, которые они упаковывали в специальные алюминиевые коробки. Алюминий принимает участие в овладении не только космическими высотами, но и морскими безднами. В США была создана океанографическая подводная лодка "Алюминаут", которая может погружаться на глубину 4600 метров. Новый сверхглубинный корабль построен не из стали, как обычно принято, а из алюминия.

Желанный гость он и на транспорте. В нашей стране завершены работы по созданию железнодорожного суперэкспресса, который начал курсировать между Москвой и Ленинградом. Своими формами этот поезд напоминает фюзеляж современного самолета, да и мчится он со скоростью взлетающего "Ту": на некоторых участках пути его скорость достигает 200 километров в час. Конструкторы предложили изготовить вагоны экспресса из алюминиевого сплава. Опытный кузов прошел суровые испытания: его сжимали с огромной силой, подвергали тяжелейшей вибрационной тряске и другим "экзекуциям", но металл все выдержал. И вот уже светло-голубой состав стремительно несется по нашим необъятным просторам.

Алюминий обладает высокой коррозионной стойкостью. Этим он обязан тончайшей пленке, которая возникает на его поверхности и служит в дальнейшем броней, защищающей металл от кислорода. Не будь этой пленки-брони, алюминий вспыхивал бы даже на воздухе и сгорал ослепительным пламенем. Спасительный панцирь позволяет алюминиевым деталям служить десятки лет даже в такой вредной для "здоровья" металлов отрасли, как химическая промышленность.

Ученые установили, что алюминий обладает еще одним ценным свойством: он не разрушает витамины. Поэтому из него изготовляют аппаратуру для маслобойной, сахарной, кондитерской, пивоваренной промышленности. Не случайно именно в алюминиевых тубах отправляются в космос разнообразные вкусные блюда и фруктовые соки, входящие в рацион космонавтов. Да и на Земле этот металл уже получил приглашение на постоянную работу в консервную промышленность, где он с успехом заменяет традиционную белую жесть.