Файл: Курсовой проект по дисциплине Автоматизированный электропривод.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 22.11.2023

Просмотров: 124

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Из формулы видно, что установившееся значение тока меньше, чем установившееся значение задания. Таким образом, вследствие влияния ЭДС двигателя система регулирования тока со стандартным ПИ-регулятором, синтезированным без учета влияния ЭДС, теряет астатизм по управляющему воздействию.

Данное явление объясняется (см. рис. 33) непрерывным увеличением скорости и соответственно величины противо-ЭДС незаторможенного двигателя. Ток якоря зависит как от ЭДС преобразователя, так и от ЭДС двигателя. Поэтому компенсация влияния на ток якоря непрерывно растущей величины ЭДС двигателя в принципе возможна лишь путем соответствующего непрерывного увеличения ЭДС преобразователя. Для этого требуется непрерывное увеличение выходного сигнала регулятора тока. Такое увеличение сигнала регулятора тока в установившемся режиме в принципе возможно лишь за счет действия его интегральной части при наличии ненулевой установившейся ошибки на его входе. Именно поэтому, несмотря на наличие в структуре регулятора интегральной компоненты, возникает определенное установившееся рассогласование между заданным и фактическим значениями тока якоря. Иными словами, в условиях непрерывного изменения ЭДС двигателя ресурсы интегральной части регулятора полностью расходуются на поддержание постоянства тока. На полную ликвидацию установившейся ошибки по току их уже не достаточно.

Установившаяся ошибка САР тока зависит от соотношения параметров Тм и Tj. Как следует из формулы, при одном и том же значении Тм ошибка будет тем меньше, чем меньше Tj. Поэтому повышение быстродействия регулятора тока обеспечивает улучшение точности САР.

При одном и том же значении Tj ошибка будет тем меньше, чем больше Тм, т.е. чем более инерционна электромеханическая система, медленнее изменяется во времени скорость и соответственно ЭДС.

При благоприятном соотношении параметров ( при Тм>> Tj ) переходный процесс незначительно отличается от стандартного и поэтому типовой

ПИ-регулятор тока оказывается приемлемым.

При неблагоприятных соотношениях параметров различие процессов регулирования тока при заторможенном и незаторможенном состояниях двигателя может оказаться недопустимо большим. В этом случае применяют усовершенствованные САР тока, реализующие принцип комбинированного регулирования.



ЗАКЛЮЧЕНИЕ

В настоящее время отмечается непрерывный рост парка лифтов при устойчивой тенденции поиска новых конструктивных решений, отражающих требования рынка и научно-технические достижения в различных отраслях промышленности.

Совершенствуются организационные формы и технические средства службы эксплуатации лифтов. Серьезное внимание уделяется вопросам повышения производительности и качества монтажных работ.

Жесткая конкуренция на внутреннем и мировых рынках, расширяющийся спектр потребностей заказчиков лифтового оборудования, служат хорошим стимулом поиска более эффективных технических решений.

Можно отметить следующие основные тенденции развития лифтостроения.

Совершенствование конструкции всех систем оборудования лифта с целью снижения уровня шума и вибрации в здании и в кабине лифта.

Расширение сферы применения наружной установки лифтов в углублении наружных стен жилых и административных зданий башенного типа.

Повышение надежности устройств, обеспечивающих безопасное применение лифтов.

Совершенствование систем привода и расширение области применения привода переменного тока с тиристорным и амплтудно-частотным управлением.

Совершенствование систем управления на основе достижений промышленной электроники и микропроцессорной техники.

Расширение масштабов применения гидравлических лифтов плунжерного типа с канатными мультипликаторами в зданиях малой и средней этажности.

Комплексное решение проблем внутреннего транспорта зданий и сооружений на основе комбинированного применения лифтов, многокабинных подъемников, эскалаторов и пассажирских конвейеров.

Широкое использование методов унификации и стандартизации с целью повышения качества изготовления, снижения стоимости массового производства и эксплуатационных затрат.

Расширение практики модернизации действующего лифтового оборудования.

Повышение эффективности системы технического обслуживания лифтов на основе применения современных методов компьютерной обработки информации и управления в сочетании с внедрением микропроцессорной системы самодиагностики лифтового оборудования.

Совершенствование технологии изготовления лифтового оборудования на основе роботизации производственных процессов.

Повышение эффективности и качества монтажа лифтового оборудования на основе совершенствования технологии и механизации трудоемких процессов.



В последнее время наметилась устойчивая тенденция к применению частотно-регулируемых электроприводов в лифтах как в нашей стране, так и за рубежом. Это обстоятельство объясняется следующим. Использование регулируемых приводов в лифте позволяет значительно повысить показатели комфортности работы лифта из-за эффективного ограничения ускорений и рывков. При этом пассажиры практически не ощущают движения. В свою очередь, обеспечиваемые частотно-регулируемым приводом плавные переходные процессы приводят к значительному снижению динамических нагрузок в элементах кинематической цепи привода, что позволяет повысить надежность и долговечность работы механического оборудования лифта, исключает необходимость частой замены редуктора, канатоведущего шкива, тормозных колодок, электродвигателя и элементов подвески противовеса при эксплуатации лифта. Причиной, определившей широкое применение регулируемого привода в лифтах, является снижение энергопотребления на 40... 60 % [18], которое достигается в основном значительным снижением момента инерции лебедки главного привода за счет удаления маховика с ведущего вала.

Применение ППЧ позволяет использовать в лифтах односкоростные асинхронные двигатели с короткозамкнутым ротором общего назначения. Маховый момент ротора таких двигателей на порядок меньше аналогичных лифтовых двухскоростных двигателей, а стоимость их в 3 — 4 раза ниже по сравнению с двухскоростными.

Таким образом, экономический эффект от внедрения частотно-регулируемого электропривода в лифтах складывается из экономии электроэнергии и снижения эксплуатационных затрат.

Список использованной литиратуры
1. Чиликин М.Г., Сандлер А.С. Общий курс электропривода: Учеб. для вузов.– 6-е изд., доп. и перераб.– М.: Энергоатомиздат, 1981.– 576 с.

2. Томашевский Н.И. и др. Типовые задания к курсовому проекту по основам электропривода – Свердловск: Изд-во Свердл. инж.-пед. ин-та, 1989. – 48 с.

3. Евзеров И.Х. и др. Комплектные тиристорные электроприводы: Справ.; Под. ред. В.М. Перельмутера.– М.: Энергоатомиздат, 1988. – 319 с.

4. Шрейнер Р.Т. Системы подчиненного регулирования электроприводов. Ч. 1: Электроприводы постоянного тока с подчиненным регулированием координат: Учеб. пособие для вузов. – Екатеринбург: Изд-во Урал. гос. проф.-пед. ун-та, 1997.– 279 с.

5. Прайс-лист НПО «Электропроект» от 28.04.2004г. (www.elp.ru)

6. Савицкая Г.В. Методика комплексного анализа хозяйственной деятельности: Краткий курс.-М.:ИНФРА-М, 2003.

7. ГОСТ 12.1.019-79. Электробезопасность. Общие требования и номенклатура видов защиты . М.: Издательство стандартов, 1998. – 48 с.


8. Правила устройства электроустановок. 7-е изд., – М.: Энергоатомиздат, 2008 – 648 с.

9. ГОСТ 12.4.011-89 Средства защиты работающих. Общие требования и классификация. http://vsegost.com/Catalog/11/11167.shtml

10. ГОСТ 22011 – 95 Лифты пассажирские и грузовые. Технические условия.

11. Чуватов А. Б., Бойков Р. Р. Внедрение энергосберегающих технологий при модернизации лифтового оборудования //Подъемно-транспортное оборудование. — 2000. — № 2. — С. 11 —12.