Файл: Протокол 1 от 14 сентября 2015г. Согласовано зам директора по увр Волкова О. Н.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 22.11.2023

Просмотров: 139

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Тематическое планирование

с определением основных видов учебной деятельности и метапредметных умений и навыков

МАТЕМАТИКА

5-6 классы (350 ч)

Основное содержание по те­мам

Характеристика основных видов дея­тельно­сти уче­ника (на уровне учеб­ных дейст­вий)

Метапредметные уме­ния и навыки

1

2

3

  1. Натуральные числа (50 ч)




Натуральный ряд. Десятичная сис­тема счисле­ния. Арифметические действия с нату­ральными числами. Свойства арифме­тиче­ских дейст­вий.

Понятие о степени с натуральным показате­лем.

Квадрат и куб числа.

Числовые выражения, значение чи­сло­вого выра­жения. Порядок дейст­вий в чи­словых выражениях, использование ско­бок.

Решение текстовых задач арифмети­че­скими спо­собами.

Делители и кратные. Наибольший общий дели­тель; наименьшее об­щее кратное. Свой­ства делимо­сти. Признаки делимо­сти на 2, 3, 5, 9, 10. Простые и составные числа. Раз­ложе­ние натурального числа на простые мно­жители. Деление с остат­ком

Описывать свойства натураль­ного ряда.

Читать и записывать натураль­ные числа, срав­нивать и упорядо­чивать их.

Выполнять вычисления с нату­ральными чис­лами; вы­числять значения степеней.

Формулировать свойства арифме­тических дейст­вий, записы­вать их с помощью букв, преоб­разовывать на их основе чи­словые выраже­ния.

Анализировать и осмысливать текст за­дачи, пере­фор­мулиро­вать условие, извле­кать необхо­димую ин­формацию, моделиро­вать усло­вие с помощью схем, ри­сунков, ре­альных предметов; строить логическую це­почку рас­суждений; критически оцени­вать получен­ный ответ, осуществ­лять самокон­троль, про­веряя от­вет на соответ­ствие усло­вию.

Формулировать определения делителя и крат­ного, про­стого числа и составного числа, свой­ства и при­знаки делимости.

Доказывать и опровергать с по­мощью контр­приме­ров утвержде­ния о делимости чи­сел. Клас­сифи­цировать нату­ральные числа (четные и нечетные, по ос­таткам от де­ления на 3 и т. п.).

Исследовать простейшие число­вые закономер­ности, про­водить числовые экспери­менты (в том числе с исполь­зова­нием калькулятора, компью­тера)

Уметь видеть математиче­скую задачу в кон­тексте про­блемной ситуации в ок­ружаю­щей жизни.

Понимать сущности алго­ритмических пред­писаний и умение действовать в соот­вет­ствии с предложен­ным алгоритмом.



  1. Дроби (120 ч)

Обыкновенные дроби. Основное свой­ство дроби. Сравнение обыкно­венных дробей. Арифметиче­ские действия с обыкно­венными дробями. Нахожде­ние части от целого и це­лого по его части.

Десятичные дроби. Сравнение деся­тич­ных дро­бей. Арифметиче­ские действия с десятич­ными дро­бями. Представление десятичной дроби в виде обыкновенной дроби и обыкно­венной в виде деся­тич­ной.

Отношение. Пропорция; основное свой­ство про­порции.

Проценты; нахождение процентов от вели­чины и величины по ее про­центам; выраже­ние отношения в процентах.

Решение текстовых задач арифмети­че­ским спо­собом

Моделировать в графической, предметной форме по­нятия и свой­ства, связан­ные с поня­тием обыкновенной дроби.

Формулировать, записывать с помощью букв основ­ное свой­ство обыкновен­ной дроби, пра­вила действий с обыкновенными дробями.

Преобразовывать обыкновен­ные дроби, срав­нивать и упорядо­чивать их. Выполнять вычисле­ния с обыкновен­ными дробями.

Читать и записывать десятич­ные дроби. Представ­лять обыкно­венные дроби в виде деся­тичных и десятич­ные в виде обык­новен­ных; находить десятич­ные прибли­жения обык­но­венных дробей.

Сравнивать и упорядочивать десятичные дроби. Вы­полнять вычисления с десятич­ными дро­бями.

Использовать эквивалентные представления дробных чисел при их сравне­нии, при вычисле­ниях.

Выполнять прикидку и оценку в ходе вычис­лений.

Объяснять, что такое процент. Представ­лять процен­ты в виде дробей и дроби в виде процентов.

Осуществлять поиск информа­ции (в СМИ), содержа­щей дан­ные, выражен­ные в процен­тах, интерпретиро­вать их. Приводить при­меры использо­вания отноше­ний на практике.

Решать задачи на проценты и дроби (в том числе за­дачи из ре­альной прак­тики), исполь­зуя при необходимо­сти калькулятор; ис­пользо­вать понятия отно­шения и пропор­ции при решении задач.

Анализировать и осмысливать текст за­дачи, пере­форму­лиро­вать усло­вие, извле­кать необхо­димую ин­формацию, моделиро­вать условие с помо­щью схем, ри­сунков, ре­альных предметов; строить логическую це­почку рас­суждений; критически оцени­вать получен­ный ответ, осуществ­лять само­кон­троль, про­веряя ответ на соответ­ствие усло­вию.

Проводить несложные исследова­ния, связан­ные со свойст­вами дробных чисел, опира­ясь на числовые экспе­ри­менты том числе с использова­нием калькуля­тора, компью­тера)

Понимать сущности алгоритми­ческих предпи­саний и умение действовать в соответ­ствии с предложенным алгоритмом.
Умение самостоятельно ста­вить цели, выби­рать и созда­вать алгоритмы для решения учеб­ных математических проб­лем;


  1. Рациональные числа (40 ч)

Положительные и отрицатель­ные числа, мо­дуль числа. Изображе­ние чисел точками коорди­натной прямой; геометриче­ская интер­претация модуля числа.

Множество целых чисел. Множе­ство ра­цио­наль­ных чисел. Сравнение рацио­нальных чисел. Арифме­тические дейст­вия с рацио­наль­ными числами. Свой­ства ариф­метиче­ских действий

Приводить примеры использова­ния в окру­жающем мире положи­тельных и отрицатель­ных чисел (темпера­тура, выигрыш — проиг­рыш, выше — ниже уровня моря и т. п.).

Изображать точками координат­ной прямой положи­тель­ные и от­рицатель­ные рациональ­ные числа.

Характеризовать множество це­лых чисел, множество рациональ­ных чи­сел.

Формулировать и записывать с помощью букв свой­ства действий с рацио­нальными чис­лами, приме­нять для преобразования чи­словых выраже­ний.

Сравнивать и упорядочивать рациональ­ные числа, вы­полнять вычисле­ния с рацио­нальными чис­лами

Понимать сущности алго­ритмических предписаний и умение действовать в со­от­ветствии с предложен­ным алгоритмом.

Умение понимать и исполь­зовать математи­че­ские сред­ства наглядности (гра­фики, диаграммы, таб­лицы, схемы и др.) для ил­люстрации, интерпрета­ции, аргу­ментации;


4. Измерения, приближения, оценки. Зависимости между величи­нами

(20 ч)

Примеры зависимостей между вели­чи­нами: ско­рость, время, рас­стояние; производи­тель­ность, время, работа; цена, коли­чество, стоимость и др. Пред­став­ление зависимостей в виде фор­мул. Вычисления по форму­лам.

Решение текстовых задач арифмети­че­скими спосо­бами

Выражать одни единицы измере­ния вели­чины в дру­гих единицах (метры в километ­рах, минуты в часах и т. п.).

Округлять натуральные числа и десятичные дроби. Выпол­нять при­кидку и оценку в ходе вычисле­ний.

Моделировать несложные зависи­мости с помощью фор­мул; выполнять вычисления по форму­лам.

Использовать знания о зависимо­стях между величи­нами (ско­рость, время, расстояние; работа, производи­тельность, время и т. п.) при решении текстовых задач

Уметь видеть математиче­скую задачу в контек­сте про­блемной ситуации в других дис­циплинах, в окружающей жизни

5. Элементы алгебры (25ч)

Использование букв для обозначе­ния чи­сел, для записи свойств ариф­метических дейст­вий.

Буквенные выражения. Числовое значе­ние буквен­ного выражения.

Уравнение, корень уравнения. Нахо­жде­ние неиз­вестных компонен­тов арифметиче­ских дейст­вий.

Декартовы координаты на плоско­сти. По­строе­ние точки по ее коорди­натам, опреде­ление коорди­нат точ­ки на плоско­сти

Читать и записывать буквенные выраже­ния, состав­лять буквенные выражения по усло­виям задач.

Вычислять числовое значение буквенного выраже­ния при задан­ных значениях букв.

Составлять уравнения по усло­виям задач. Решать про­стейшие уравнения на основе зави­симо­стей между компо­нентами арифме­тических действий.

Строить на координатной плоско­сти точки и фигуры по за­данным координатам; опреде­лять координаты точек

Уметь видеть математиче­скую задачу в кон­тексте проблемной ситуации в ок­ружаю­щей жизни.

Понимать сущности алгорит­мических предпи­саний и уме­ние действовать в соответст­вии с предложенным алгорит­мом.

Первоначальные представле­ния об идеях и о методах математики как уни­версальном языке науки и тех­ники, сред­стве моделирова­ния явлений и про­цессов;


6. Описательная статистика. Вероятность. Комбинаторика. Множества

(20ч)

Представление данных в виде таб­лиц, диа­грамм.

Понятие о случайном опыте и собы­тии. Досто­вер­ное и невозмож­ное события. Срав­нение шансов.

Решение комбинаторных задач пере­бо­ром вари­антов

Извлекать информацию из таб­лиц и диа­грамм, вы­пол­нять вычис­ления по таблич­ным дан­ным, сравнивать величины, нахо­дить наибольшие и наимень­шие значе­ния и др.

Выполнять сбор информации в несложных случаях, пред­став­лять информацию в виде таблиц и диаграмм, в том числе с помо­щью компьютерных программ.

Приводить примеры случайных событий, достоверных и невозмож­ных событий. Сравни­вать шансы наступления собы­тий; строить речевые конструк­ции с использова­нием словосочета­ний более вероятно, мало­вероятно и др.

Выполнять перебор всех возмож­ных вариан­тов для пере­счета объек­тов или комбина­ций, выде­лять комби­нации, отвечаю­щие заданным условиям

Приводить примеры конечных и бесконеч­ных мно­жеств. Находить объединение и пересе­чение конкретных множеств. Приво­дить примеры несложных классифика­ций из различных областей жизни.

Иллюстрировать теоретико-множественные понятия с помощью кругов Эйлера


Уметь видеть математиче­скую задачу в кон­тексте проблемной си­туации в окружаю­щей жизни.

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их пров

ерки

7. Наглядная геометрия (45 ч)

Наглядные представления о фигу­рах на плоско­сти: прямая, отрезок, луч, угол, лома­ная, многоугольник, правильный многоуголь­ник, окруж­ность, круг. Четы­рех­уголь­ник, прямоугольник, квадрат. Тре­уголь­ник, виды треугольников.

Изображение геометрических фи­гур. Вза­им­ное расположение двух прямых, двух окружно­стей, пря­мой и окружности.

Длина отрезка, ломаной. Периметр много­уголь­ни­ка. Единицы измере­ния длины. Измере­ние длины от­резка, построе­ние от­резка заданной длины.

Угол. Виды углов. Градусная мера угла. Измере­ние и построение уг­лов с помо­щью транспортира.

Понятие площади фигуры; еди­ницы изме­ре­ния площади. Пло­щадь прямоуголь­ника и площадь квад­рата. Рав­новеликие фигуры.

Наглядные представления о про­странствен­ных фи­гурах: куб, парал­лелепи­пед, призма, пирамида, шар, сфера, конус, цилиндр. Изобра­жение про­странствен­ных фигур. При­меры сечений. Много­гранники, пра­вильные многогран­ники. Примеры разверток много­гранни­ков, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямо­угольного параллелепи­педа и объем куба.

Понятие о равенстве фигур. Цен­тральная, осе­вая и зеркальная сим­метрии. Изображе­ние симметрич­ных фигур



Распознавать на чертежах, рисун­ках и моде­лях гео­метриче­ские фигуры, конфигурации фи­гур (плоские и пространствен­ные). Приво­дить примеры анало­гов гео­метриче­ских фигур в окру­жающем мире.

Изображать геометрические фи­гуры и их конфигура­ции от руки и с использованием чертежных инст­рументов. Изображать геомет­рические фигуры на клетча­той бу­маге.

Измерять с помощью инструмен­тов и сравни­вать дли­ны отрезков и величины уг­лов. Строить от­резки заданной длины с помо­щью линейки и циркуля и углы задан­ной ве­личины с помощью транспор­тира. Вы­ражать одни еди­ни­цы измерения длин через другие.

Вычислять площади квадратов и прямоуголь­ников, исполь­зуя фор­мулы пло­щади квадрата и пло­щади прямо­угольника.

Выражать одни единицы измере­ния пло­щади через дру­гие.

Изготавливать пространствен­ные фигуры из развер­ток; распо­знавать развертки куба, параллеле­пипеда, пи­ра­миды, ци­линдра и ко­нуса.Рассматри­ватьпростейшие сечения про­странствен­ных фигур, получае­мые путем пред­метного или ком­пьютерного моделирова­ния, опре­делять их вид.

Вычислять объемы куба и прямо­угольного паралле­лепи­педа, используя формулы объ­ема куба и объема прямо­уголь­ного параллеле­пи­педа. Выра­жать одни еди­ницы измерения объема через другие.

Исследовать и описывать свой­ства геометри­ческих фи­гур (пло­ских и пространст­венных), исполь­зуя экспери­мент, наблюде­ние, измерение. Модели­ровать гео­метри­ческие объекты, исполь­зуя бумагу, пла­стилин, проволо­ку и др. Исполь­зовать компь­ютер­ное мо­делирование и экспе­римент для изучения свойств геометриче­ских объ­ектов.

Находить в окружающем мире плоские и про­стран­ствен­ные сим­метричные фигуры.

Решать задачи на нахождение длин отрез­ков, пери­мет­ров мно­гоугольников, градусной меры уг­лов, площа­дей квадратов и прямо­уголь­ников, объемов ку­бов и пря­моуголь­ных параллеле­пипедов, куба. Выде­лять в усло­вии задачи данные, необходимые для ее реше­ния, стро­ить логическую це­почку рас­суждений, сопостав­лять полу­ченный резуль­тат с усло­вием задачи.

Изображать равные фигуры, сим­метричные фигуры

Строить логическую це­почку рас­суждений, сопостав­лять полу­ченный результат с усло­вием задачи.

Умение применять индуктив­ные и дедуктив­ные спосо­бы рассуждений, ви­деть различ­ные стратегии решения задач

Умение планировать и осуще­ствлять деятель­ность, на­прав­ленную на реше­ние за­дач ис­следовательского характера;


Резерв времени - 30 ч



Тематическое планирование

7-9 классы. Раздел «Алгебра» (315ч)

Основное содержание по темам

Характеристика основных видов дея­тельности уче­ника (на уровне учебных дей­ствий)

Метапредметные уме­ния и навыки

1

2

3

  1. Действительные числа (15ч)




Расширение множества натуральных чисел до множества целых, множества целых чисел до множе­ства рациональ­ных. Рациональное число как отношение т/п, где т — целое число, а п — нату­ральное чи­сло.

Степень с целым показателем. Квадрат­ный корень из числа. Корень третьей сте­пени.

Понятие об иррациональном числе. Ирра­цио­нальность числа и несоизме­римость сто­роны и диагонали квадрата. Десятичные при­ближения ирра­циональных чисел.

Множество действительных чисел; пред­ставле­ние действительных чисел в виде беско­нечных десятич­ных дробей. Сравнение действи­тельных чисел.

Взаимно однозначное соответствие ме­жду дей­ствительными числами и точ­ками координат­ной прямой. Числовые проме­жутки: интервал, отрезок, луч

Описывать множество целых чисел, множе­ство ра­циональ­ных чисел, соотношение ме­жду этими множе­ст­вами.

Сравнивать и упорядочивать рациональ­ные числа, выпол­нять вычисления с рациональ­ными числами, вы­чис­лять значе­ния степеней с целым показателем.

Формулировать определение квадратного корня из числа. Ис­пользовать график функ­ции у = х2 для нахож­дения квад­ратных кор­ней. Вычислять точные и прибли­женные значения корней, используя при необходимо­сти калькуля­тор; проводить оценку квадрат­ных корней.

Формулировать определение корня третьей степени; нахо­дить значения кубических кор­ней, при необходимо­сти используя, калькуля­тор.

Приводить примеры иррацио­нальных чисел; распо­зна­вать рациональные и иррациональ­ные числа; изобра­жать числа точками коорди­натной прямой.

Находить десятичные приближе­ния рацио­нальных и иррацио­нальных чисел; сравни­вать и упорядочивать действи­тельные числа.

Описывать множество действи­тельных чи­сел.

Использовать в письменной ма­тематиче­ской речи обозначе­ния и графические изобра­жения чи­словых мно­жеств, теоретико-мно­жественную символику

Умение понимать и исполь­зовать математиче­ские сред­ства наглядности (гра­фики, диаграммы, таб­лицы, схемы и др.) для ил­люстрации, интерпрета­ции, аргументации.

Умение находить в различ­ных источниках информа­цию, необходимую для ре­шения мате­матических про­блем, представ­лять ее в понятной форме, прини­мать решение в усло­виях не­полной и избыточной, точной и вероят­ност­ной информации.


  1. Измерения, приближения, оценки (10 ч)




Приближенное значение величины, точ­ность приближения. Размеры объек­тов окружаю­щего мира (от элементар­ных частиц до Вселенной), длительность процессов в окру­жающем мире..

Прикидка и оценка результатов вычисле­ний.

Способы записи значений величин, в том числе с выделе­нием множите­ля — сте­пени 10 в записи числа

Находить, анализировать, со­поставлять числовые характе­ри­стики объектов окру­жаю­щего мира.

Использовать запись чисел в стандартном виде для выраже­ния размеров объектов, длитель­ности процессов в окру­жающем мире.

Сравнивать числа и величины, записанные с исполь­зова­нием степени 10.

Использовать разные формы записи прибли­женных значе­ний; делать выводы о точности приближения по за­писи прибли­женного значе­ния.

Выполнять вычисления с реаль­ными дан­ными.

Выполнять прикидку и оценку результатов вычислений


Умение видеть математиче­скую задачу в кон­тексте проб­лемной ситуа­ции в других дис­цип­линах, в окружающей жизни.

Выполнять вычисления с реальными дан­ными.


  1. Введение в алгебру (8 ч)




Буквенные выражения (выражения с пе­ремен­ны­ми). Числовое значение буквен­ного выражения. До­пустимые зна­чения перемен­ных. Подстановка выра­же­ний вместо перемен­ных.

Преобразование буквенных выраже­ний на ос­нове свойств арифметических действий. Равен­ство буквен­ных выраже­ний. Тождество

Выполнять элементарные зна­ково-символиче­ские дейст­вия: применять буквы для обозначе­ния чисел, для записи общих ут­верждений; состав­лять буквенные выра­же­ния по условиям, заданным словесно, рисун­ком или чертежом; преоб­разовывать алгебраи­че­ские суммы и произведения (вы­полнять приведение подоб­ных слагае­мых, раскрытие ско­бок, упрощение произведе­ний).

Вычислять числовое значение буквенного выраже­ния; нахо­дить область допустимых значе­ний перемен­ных в выраже­нии

Понимание сущности алгоритмических пред­писаний и умение действо­вать в соответст­вии с предложенным алго­ритмом.

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы и др.) для иллюстрации, интерпрета­ции, аргументации.


  1. Многочлены (45ч)




Степень с натуральным показателем и ее свой­ства. Одночлены и много­члены. Степень многочлена. Сло­жение, вычитание, умноже­ние многочленов. Фор­мулы сокращенного умноже­ния: квад­рат суммы и квадрат разно­сти. Формула разности квадратов. Преобра­зова­ние целого выражения в мно­го­член. Разло­жение мно­гочлена на множители: вынесе­ние общего множи­теля за скобки, группи­ровка, примене­ние формул сокра­щен­ного умножения.

Многочлены с одной переменной. Ко­рень мно­гочлена. Квадратный трех­член, разложе­ние квадратно­го трех­члена на множители



Формулировать, записывать в символиче­ской фор­ме и обос­новывать свойства сте­пени с натуральным по­казате­лем; при­ме­нять свойства степени для преобразо­вания выраже­ний и вычислений.

Выполнять действия с много­членами.

Выводить формулы сокращен­ного умноже­ния, при­менять их в преобразованиях выраже­ний и вычислениях.

Выполнять разложение много­членов на мно­жители.

Распознавать квадратный трех­член, выяс­нять возмож­ность разложения на множи­тели, представлять квадрат­ный трехчлен в виде произведе­ния линейных множителей.

Применять различные формы самоконтроля при вы­полне­нии преобразований

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение самостоятельно ставить цели, выби­рать и созда­вать алгоритмы для решения учеб­ных математических проб­лем.

Понимать сущности алгоритмических предпи­саний и умение действовать в соответст­вии с предложенным алгоритмом.


  1. Алгебраические дроби (22ч)




Алгебраическая дробь. Основное свой­ство ал­геб­раической дроби. Сокраще­ние дробей. Сложение, вы­чита­ние, умножение, деление алгеб­раиче­ских дробей.

Степень с целым показателем и ее свой­ства.

Рациональные выражения и их преобра­зова­ния. Доказательство тож­деств

Формулировать основное свой­ство алгебраи­ческой дроби и применять его для преобразо­вания дробей.

Выполнять действия с алгебраи­ческими дро­бями.

Пред­став­лять целое выраже­ние в виде много­члена, дробное — в виде отношения многочле­нов; доказывать тождества.

Формулировать определение степени с це­лым пока­зателем.

Формулировать, записывать в символиче­ской форме и иллю­стрировать примерами свойства степени с целым показа­телем; приме­нять свой­ства степени для преобразова­ния выражений и вычислений

Умение применять индуктивные и дедуктив­ные спосо­бы рассуждений, ви­деть различные стратегии решения задач.

Понимать сущности алгоритмических предпи­саний и умение действо­вать в соответст­вии с предложенным алго­ритмом;


  1. Квадратныекорни (12ч)




Понятия квадратного корня, арифме­тиче­ского квадратного корня. Уравнение вида х2=а. Свойства арифме­тических квадрат­ных корней: ко­рень из произ­ведения, частного, сте­пени. Тождества, , где , . Применение свойств арифме­ти­че­ских квадратных корней для преобразова­ния числовых вы­ражений и к вычисле­ниям.

Доказывать свойства арифмети­ческих квад­ратных корней; применять их для пре­образо­вания выражений.

Вычислять значения выраже­ний, содержа­щих квад­ратные корни; выражать перемен­ные из геометрических и физиче­ских фор­мул.

Исследовать уравнение вида х2 = а; нахо­дить точ­ные и при­ближенные корни при

а > 0

Умение планировать и осуществлять деятель­ность, на­правленную на реше­ние за­дач исследовательского характер.


  1. Уравнения с одной переменной (38 ч)




Уравнение с одной переменной. Корень уравне­ния. Свойства числовых ра­венств. Равно­сильность урав­нений.

Линейное уравнение. Решение уравне­ний, сводя­щихся к линейным.

Квадратное уравнение. Неполные квад­рат­ные урав­нения. Формула корней квад­ратного уравне­ния. Теоре­ма Виета. Решение уравне­ний, сводящихся к квадрат­ным. Биквадрат­ное уравнение.

Примеры решения уравнений третьей и четвер­той степени разложением на мно­жи­тели.

Решение дробно-рациональных уравне­ний.

Решение текстовых задач алгебраиче­ским спосо­бом

Распознавать линейные и квад­ратные уравне­ния, це­лые и дробные уравнения.

Решать линейные, квадратные уравнения, а также уравнения, сводящиеся к ним; ре­шать дробно-рацио­нальные уравне­ния.

Исследовать квадратные уравне­ния по дискри­ми­нанту и коэффициентам.

Решать текстовые задачи алгеб­раическим способом: пере­ходить от словесной форму­лировки условия задачи к алгебраической мо­дели путем составления уравнения; ре­шать составленное уравнение; интер­претировать ре­зультат

Умение применять индуктивные и дедуктив­ные спосо­бы рассуждений, ви­деть различные стратегии решения задач.

Первоначальные представления об идеях и о методах математики как уни­версальном языке науки и техники, сред­стве моделирова­ния явлений и процессов.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

  1. Системы уравнений (30 ч)




Уравнение с двумя переменными. Линей­ное урав­нение с двумя перемен­ными. Примеры реше­ния урав­нений в целых числах.

Система уравнений с двумя перемен­ными. Равно­сильность систем уравне­ний. Система двух линейных уравнений с двумя перемен­ными; решение подстанов­кой и сложением. Решение сис­тем двух уравнений, одно из кото­рых линейное, а другое второй степени. При­меры решения систем нелинейных уравне­ний.

Решение текстовых задач алгебраиче­ским спо­собом.

Декартовы координаты на плоскости. Графиче­ская интерпретация уравнения с двумя перемен­ными.

График линейного уравнения с двумя перемен­ны­ми, угловой коэффициент пря­мой; условие парал­лельности пря­мых.

Графики простейших нелинейных уравне­ний (па­рабола, гипербола, окруж­ность).

Графическая интерпретация системы уравне­ний с двумя переменными

Определять, является ли пара чисел реше­нием дан­ного уравне­ния с двумя перемен­ными; приводить при­меры ре­шения уравне­ний с двумя пере­менными.

Решать задачи, алгебраической моделью кото­рых яв­ляется урав­нение с двумя перемен­ными; находить целые решения пу­тем перебора.

Решать системы двух уравне­ний с двумя пере­менны­ми, ука­занные в содержании.

Решать текстовые задачи алгеб­раическим способом: пере­ходить от словесной форму­лировки условия задачи к алгебраической мо­дели путем составления системы уравне­ний; решать составленную сис­тему уравне­ний; ин­терпретиро­вать результат.

Строить графики уравнений с двумя перемен­ными.

Конструи­ровать эквивалент­ные речевые вы­сказывания с использованием алгебраиче­ского и геометрического язы­ков.

Решать и исследовать уравне­ния и системы уравне­ний на ос­нове функционально-графиче­ских представле­ний уравнений

Использовать функционально-графические представления для решения и исследования уравнений и систем.

Понимать сущности алгоритмических предпи­саний и умение действовать в соответст­вии с предложенным алгоритмом.

Использовать математические средства на­глядности графики для интерпретации, аргу­ментации.



  1. Неравенства (20ч)




Числовые неравенства и их свойства.

Неравенство с одной переменной. Равно­силь­ность неравенств. Линейные неравенства с од­ной перемен­ной. Квадрат­ные неравенства.

Системы линейных неравенств с одной перемен­ной

Формулировать свойства число­вых нера­венств, ил­люстри­ровать их на координат­ной прямой, доказы­вать алгебраически; приме­нять свойства неравенств при ре­ше­нии задач.

Распознавать линейные и квад­ратные неравен­ства.

Ре­шать линейные неравенства, системы линей­ных нера­венств.

Решать квадратные неравен­ства на основе гра­фиче­ских пред­ставлений

Понимать сущности алгоритмических предпи­саний и умение действовать в соответст­вии с предложенным алгоритмом.

Использовать математические средства на­глядности графики для интерпретации, аргу­ментации.



  1. Зависимости между величинами (15ч)

Зависимость между величинами.

Представление зависимостей между вели­чи­нами в виде формул. Вычисления по форму­лам.

Прямая пропорциональная зависимость: зада­ние формулой, коэффициент пропор­цио­нально­сти; свой­ства. При­меры прямо пропор­циональных зависимо­стей.

Обратная пропорциональная зависи­мость: зада­ние формулой, коэффициент обратной про­порциональности; свой­ства. Примеры обрат­ных пропорцио­наль­ных зависимостей.

Решение задач на прямую пропорциональ­ность и обратную пропор­циональную зависимо­сти

Составлять формулы, выра­жающие зависимо­сти между ве­личинами, вычислять по форму­лам.

Распознавать прямую и обрат­ную пропорцио­наль­ные зависи­мости.

Решать тексто­вые за­дачи на прямую и обрат­ную про­порциональные зависимо­сти том числе с контек­стом из смежных дисцип­лин, из реаль­ной жизни)

Умение видеть математическую задачу в кон­тексте проб­лемной ситуа­ции в других дис­циплинах, в окружающей жизни.

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение применять индуктивные и дедуктив­ные спосо­бы рассуждений, ви­деть различные стратегии решения задач;


  1. Числовые функции (35 ч)




Понятие функции. Область определения и множе­ство значений функции. Спо­собы зада­ния функции. График функ­ции. Свойства функ­ции, их отображение на графике: возраста­ние и убывание функ­ции, нули функ­ции, сохранение знака. Чтение и построе­ние гра­фиков функций.

Примеры графиков зависимостей, отра­жаю­щих реальные процессы.

Функции, описывающие прямую и обрат­ную про­порциональные зависимо­сти, их графики.

Линейная функция, ее график и свой­ства.

Квадратичная функция, ее график и свой­ства.

Степенные функции с натуральными пока­зате­лями 2и3, их графики и свой­ства. Гра­фики функций

; ;

Вычислять значения функций, заданных фор­мулами (при необ­ходимости использо­вать калькулятор); со­ставлять таб­лицы значе­ний функций.

Строить по точкам графики функций. Описы­вать свойства функции на основе ее графиче­ского представ­ления.

Моделировать реальные зависи­мости форму­лами и графи­ками. Читать графики реаль­ных зависимостей.

Использовать функциональ­ную символику для запи­си раз­нообразных фактов, связан­ных с рассматриваемы­ми функ­циями, обогащая опыт выполне­ния знаково-символиче­ских действий. Стро­ить речевые конструкции с использо­ванием функциональ­ной терми­ноло­гии.

Использовать компьютерные программы для по­строения гра­фиков функций, для исследо­ва­ния положе­ния на координат­ной плоскости графиков функ­ций в за­висимо­сти от значений коэффициентов, входящих в фор­мулу.

Распознавать виды изучаемых функций. Пока­зывать схемати­чески положение на ко­ординатной плоскости графи­ков изучаемых функций в зави­симости от значений коэффи­ци­ентов, входящих в фор­мулы.

Строить графики изучаемых функций; описы­вать их

свойства

Умение самостоятельно ставить цели, выби­рать и созда­вать алгоритмы для решения учеб­ных математических проб­лем.

Умение видеть математическую задачу в кон­тексте проб­лемной ситуа­ции в других дис­циплинах, в окружающей жизни.

Самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Планировать и осуществлять деятельность, направленную на решение задач исследователь­ского характера.



  1. Числовые последовательности. Арифметическая и геометриче­ская прогрессии (15 ч)




Понятие числовой последовательно­сти. Зада­ние последовательности рекур­рентной фор­мулой и фор­мулой n-го члена.

Арифметическая и геометрическая про­грес­сии. Формулы n-го члена арифме­тиче­ской и геометриче­ской про­грессий, суммы первых п членов. Изобра­же­ние членов арифме­тической и геометрической про­грес­сий точками коор­динатной плоскости. Линей­ный и экспоненциаль­ный рост. Слож­ные про­центы

Применять индексные обозначе­ния, стро­ить рече­вые высказывания с использова­нием терминологии, свя­занной с понятием последо­вательно­сти.

Вычислять члены последова­тельностей, задан­ных форму­лой п-го члена или рекуррент­ной формулой.

Устанавливать закономерность в построе­нии последова­тельно­сти, если из­вестны пер­вые несколько ее чле­нов.

Изображать члены по­следователь­ности точ­ками на ко­ординатной плоскости.

Распознавать арифметическую и геометриче­скую прогрессии при разных спосо­бах задания.

Выводить на основе доказатель­ных рассужде­ний фор­мулы общего чле­на арифме­тической и геометрической про­грессий, суммы первых л членов арифметиче­ской и гео­метрической про­грессий; ре­шать задачи с использованием этих формул.

Рассматривать примеры из ре­альной жизни, иллю­стрирую­щие изменение в арифметиче­ской прогрессии, в геометриче­ской прогрес­сии; изображать соответствую­щие зависимо­сти графически.

Решать задачи на сложные про­центы, в том числе задачи из реальной практики исполь­зованием кальку­лятора)

Понимать сущности алгоритмических предпи­саний и умение действовать в соответст­вии с предложенным алгоритмом.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.


  1. Описательная статистика (10 ч)




Представление данных в виде таблиц, диа­грамм, графиков. Случайная изменчи­вость. Ста­тистические

характеристики набора данных: сред­нее ариф­метиче­ское, медиана, наиболь­шее и наи­меньшее значения, размах. Пред­ставление о выборочном исследова­нии

Извлекать информацию из таб­лиц и диа­грамм, вы­полнять вычисления по таблич­ным дан­ным. Определять по диаграм­мам наибольшие и наименьшие данные, сравни­вать величины.

Представлять информацию в виде таблиц, столбча­тых и круго­вых диаграмм, в том числе с помощью компьютер­ных программ.

Приводить примеры числовых данных (цена, рост, время на дорогу и т. д.),нахо­дить сред­нее арифмети­ческое, размах чи­сло­вых наборов.

Приводить содержательные примеры исполь­зования сред­них для описания данных (уро­вень воды в водоеме, спортив­ные показа­тели, определение границ климати­ческих зон)

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы) для иллюстрации, интерпретации, аргу­ментации.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.


  1. Случайные события и вероятность (15 ч)




Понятие о случайном опыте и случай­ном со­бытии. Частота случайного события. Статисти­че­ский подход к поня­тию вероятно­сти. Вероятности проти­воположных событий. Достовер­ные и невозможные события. Равновоз­можность событий. Классическое опреде­ле­ние вероятности

Проводить случайные экспери­менты, в том числе с помощью компьютерного моделирова­ния, интерпретиро­вать их резуль­таты. Вычислять частоту слу­чайного собы­тия; оценивать ве­роятность с помощью частоты, получен­ной опытным путем.

Решать задачи на нахождение вероятностей событий.

Проводить случайные экспери­менты, в том числе с помощью компьютерного моделирова­ния, интерпретиро­вать их резуль­таты.

Вычислять частоту слу­чайного собы­тия; оценивать ве­роятность с помощью частоты, получен­ной опытным путем.

Решать задачи на нахождение вероятностей событий.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.


  1. Элементы комбинаторики (10 ч)

Решение комбинаторных задач перебо­ром ва­ри­антов. Комбинаторное правило умноже­ния. Переста­новки и фак­ториал.


Выполнять перебор всех воз­можных вариан­тов для пере­счета объектов или комбина­ций.

Применять правило комбина­торного умноже­ния для реше­ния задач на нахожде­ние числа объектов или ком­бинаций (диа­го­нали многоугольника, рукопо­жатия, число ко­дов, шиф­ров, паролей и т. п.).

Распо­знавать задачи на опреде­ление числа переста­но­вок и выполнять соответствую­щие вычисления.

Решать задачи на вычисление вероятности с приме­нением ком­бинаторики

Понимать и использовать математические средства наглядности схемы для иллюстра­ции, интерпретации

  1. Множества. Элементы логики (7 ч)

Множество, элемент множества. Зада­ние мно­жеств перечислением элемен­тов, характери­стическим свойст­вом. Стандартные обозначения число­вых мно­жеств. Пустое множе­ство и его обозначение. Подмно­же­ство. Объедине­ние и пересечение множеств, раз­ность множеств.

Иллюстрация отношений между мно­жест­вами с помощью диаграмм Эйлера — Венна.

Понятия о равносильности, следова­нии, упот­реб­ление логических связок если то, в том и толь­ко том слу­чае. Логические связкии, или

Приводить примеры конечных и бесконеч­ных мно­жеств. Нахо­дить объединение и пересе­че­ние множеств. Приводить при­меры несложных классифика­ций.

Использовать теоретико-множе­ственную символику и язык при решении задач в ходе изучения различных разделов курса.

Иллюстрировать математиче­ские понятия и утверж­дения при­мерами. Использовать при­меры и контрпри­меры в аргумен­тации.

Конструировать математиче­ские предложе­ния с по­мощью связок если то, в том и только том слу­чае, логиче­ских связок и, или

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы) для иллюстрации, интерпретации, аргу­ментации.


Резерв -8ч



Раздел « Геометрия» 7-9 классы (210 ч)

  1. Прямые и углы(20ч)




Точка, прямая, плоскость. Отрезок, луч. Угол. Прямой угол, острый и тупой углы, раз­вернутый угол. Вертикальные и смежные углы. Биссектриса угла и ее свойство. Свой­ства углов с параллельными и перпендикуляр­ными сторонами. Взаимное расположение прямых на плоскости: парал­лельные и пересекающиеся прямые. Перпенди­кулярные прямые. Теоремы о парал­лельности и перпендикулярности пря­мых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку. Геометрическое место точек. Метод геометрических мест точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности пер­пендикуляра к прямой, свойстве перпендикуляра и наклонной, свойствах биссектрисы угла и серединного перпендикуляра к отрезку.

Решать задачи на построение, доказательство и вычисле­ния. Выделять в условии задачи условие и заклю­чение. Опираясь на условие задачи, проводить необходимые доказательные рассуждения. Сопостав­лять полученный результат с условием задачи.


Уметь находить в различных источ­никах информацию, необходи­мую для решения математи­ческих проблем, и пред­ставлять ее в понятной форме, пони­мать и использовать математи­ческие средства наглядно­сти (чертежи) для иллюстрации, интерпретации.


2.Треугольники (65 ч)

Треугольники. Прямоугольные, остро­уголь­ные и тупоугольные треуголь­ники. Вы­сота, медиана, биссек­т­риса, средняя линия треугольника. Равно­бедренные и равносторон­ние тре­угольники; свойства и при­знаки равнобед­ренного треугольника.

Признаки равенства треугольников. При­знаки ра­венства прямоугольных тре­угольни­ков. Неравенство треуголь­ника. Соотноше­ния между сторонами и угла­ми треугольника. Сумма углов тре­угольника. Внешние углы треугольника, теорема о внешнем угле треуголь­ника. Теорема Фалеса. Подобие тре­угольни­ков; коэф­фициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Синус, косинус, тан­генс, ко­тангенс острого угла прямо­угольного треугольника и углов от 0 до 180°; приведе­ние к острому углу. Реше­ние прямоугольных треугольников. Ос­новное тригоно­метриче­ское тождество. Формулы, связывающие си­нус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: тео­рема косинусов и теорема синусов.

Замечательные точки треугольника: точки пересе­чения серединных перпенди­куляров, биссектрис, ме­диан, высот и их продолжений

Формулировать определения прямоугольного, ост­ро­уголь­ного, тупоугольного, равнобед­ренного, равносто­роннего треугольников; вы­соты, медианы, биссек­трисы, средней линии треугольника; распознавать и изобра­жать их на чертежах и рисунках.

Формулировать определение равных треугольников. Форму­лировать и доказы­вать теоремы о признаках ра­венства треугольников.

Объяснять и иллюстриро­вать неравенство тре­уголь­ника.

Формулировать и доказы­вать теоремы о свойствах и признаках равнобедренного треугольника, соотноше­ни­ях между сторонами и углами тре­угольника, сумме углов тре­угольника, внешнем угле треугольника, о сред­ней ли­нии треугольника.

Формулировать определение подобных треугольни­ков.

Формулировать и доказы­вать теоремы о призна­ках подо­бия треугольников, тео­рему Фалеса.

Формулировать определения и иллюстрировать поня­тия синуса, косинуса, тангенса и котангенса ост­рого угла прямо­угольного треугольника. Выводить формулы, выражаю­щие функции угла прямоугольного треугольни­ка через его стороны. Формулиро­вать и доказы­вать те­орему Пифагора.

Формулировать определения синуса, косинуса, тан­генса, ко­тангенса углов от 0 до 180°.

Выводить формулы, выражаю­щие функции углов от 0 до 180° через функции острых углов.

Формулиро­вать и разъяснять основное тригонометри­ческое тожде­ство. По значениям одной три­гонометрической функ­ции угла вычислять значе­ния дру­гих тригонометриче­ских функций этого угла.

Формули­ровать и доказы­вать теоремы синусов и коси­нусов.

Формулировать и доказы­вать теоремы о точках пересе­чения серединных пер­пендикуляров, биссек­трис, медиан, высот или их продолжений.

Исследовать свойства тре­угольника с помощью компь­ю­терных программ.

Решать задачи на построе­ние, доказательство и вы­чис­ления. Выделять в усло­вии задачи условие и заключе­ние.

Моделировать условие задачи с помощью чертежа или рисунка, прово­дить дополнительные по­строения в хо­де решения. Опираясь на данные усло­вия задачи, прово­дить необхо­димые рассуждения.

Интерпретировать полу­чен­ный результат и сопостав­лять его с условием задачи

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение применять индуктивные и дедуктивные спосо­бы рассужде­ний, ви­деть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и созда­вать алго­ритмы для решения учебных матема­тических проб­лем.

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера.


3. Четырёхугольники (20ч)

Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равно­бедрен­ная трапеция

Формулировать определения параллелограмма, пря­моуголь­ника, квадрата, ромба, трапе­ции, равнобедрен­ной и прямо­угольной трапеции, средней линии трапе­ции; распозна­вать и изображать их на чер­тежах и рисун­ках.

Формулировать и доказы­вать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадра­та, ромба, трапеции.

Исследовать свойства четы­рехугольников с по­мо­щью компьютерных про­грамм.

Решать задачи на построение, доказательство и вы­числе­ния. Моделировать условие за­дачи с помощью чер­тежа или рисунка, проводить дополни­тельные по­строения в ходе ре­шения.

Выделять на чертеже конфигурации, не­обходимые для проведения обоснований логических шагов реше­ния.

Интерпретировать получен­ный резуль­тат и сопостав­лять его с условием задачи

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение применять индуктивные и дедуктивные спосо­бы рассужде­ний, ви­деть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и созда­вать алго­ритмы для решения учебных матема­тических проб­лем.

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера.


4. Многоугольники (10ч)

Многоугольники. Выпуклые много­угольники. Сумма углов вы­пуклого многоугольника. Пра­вильные многоуголь­ники

Распознавать многоуголь­ники, формулировать оп­реде­ление и приводить при­меры многоугольников.

Формулировать и доказы­вать теорему о сумме уг­лов выпуклого многоугольника.

Исследовать свойства много­угольников с помощью компью­терных программ.

Решать задачи на доказатель­ство и вычисления.

Моделиро­вать условие за­дачи с помощью чертежа или рисунка, проводить дополни­тельные построения в ходе ре­шения.

Интерпретировать полученный результат и сопос­тав­лять его с условием задачи

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение применять индуктивные и дедуктивные спосо­бы рассужде­ний, ви­деть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и созда­вать алго­ритмы для решения учебных матема­тических проб­лем.

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера.


5. Окружность и круг (15 ч)

Окружность и круг. Центр, радиус, диа­метр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол, вели­чина вписанного угла. Взаимное располо­жение прямой и окружно­сти, двух окружностей. Касательная и секу­щая к окружности, их свойства.

Вписанные и описанные многоуголь­ники. Ок­руж­ность, вписанная в треуголь­ник, и ок­ружность, опи­санная около треугольника.

Вписанные и описанные окружности правиль­ного многоугольника. Формулы для вычисления стороны правильного многоугольника; радиуса окружности, вписанной в правильный многоугольник, радиуса окружности, описанной около правильного многоугольника



Формулировать определения понятий, связанных с окружно­стью, центрального и вписанного углов, секу­щей и касательной к окружности, уг­лов, связанных с окруж­но­стью.

Формулировать и доказы­вать теоремы о вписан­ных уг­лах, углах, связанных с окруж­ностью.

Изображать, распознавать и описывать взаимное располо­жение прямой и окружности.

Изображать и формулиро­вать определения впи­сан­ных и описанных многоугольников и треугольников;

окружности, вписанной в тре­угольник, и окружности, описанной около треуголь­ника.

Формулировать и доказы­вать теоремы о вписанной и описанной окружностях тре­угольника и многоуголь­ника.

Исследовать свойства конфи­гураций, связанных с ок­ружностью, с помощью компьютерных программ.

Решать задачи на построе­ние, доказательство и вы­чис­ления.

Моделировать ус­ловие задачи с помощью чер­тежа или рисунка, прово­дить дополнительные по­строения в ходе решения.

Вы­делять на чертеже конфи­гурации, необходимые для проведения обоснований ло­гических шагов реше­ния.

Ин­терпретировать получен­ный результат и сопостав­лять его с условием задачи

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение применять индуктивные и дедуктивные спосо­бы рассужде­ний, ви­деть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и созда­вать алго­ритмы для решения учебных матема­тических проб­лем.

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера.


6 Геометрические преобразования (10ч)

Понятие о равенстве фигур. Понятие движе­ния: осевая и центральная симмет­рии, парал­лельный пере­нос, поворот. По­нятие о подо­бии фигур и гомотетии

Объяснять и иллюстриро­вать понятия равенства фи­гур, подобия. Строить равные и симметричные фигу­ры, вы­полнять параллельный пере­нос и поворот.

Исследовать свойства движе­ний с помощью компь­ютер­ных программ.

Выполнять проекты по темам геометрических преоб­разова­ний на плоскости

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера.


  1. Построения с помощью циркуля и линейки ()

Построения с помощью циркуля и ли­нейки. Основ­ные задачи на построение: деление от­резка пополам; построение угла, равного дан­ному; построение тре­угольника по трем сторо­нам; построение перпендику­ляра к пря­мой; построение биссектрисы угла; деление отрезка на п равных частей.


Решать задачи на построение с помощью циркуля и ли­нейки.

Находить условия существова­ния решения, выпол­нять построение точек, необходимых для построения ис­ко­мой фигуры.

Доказы­вать, что построенная фигура удовлетворяет условиям за­дачи (определять число реше­ний задачи при каждом возмож­ном выборе данных)

Умение видеть математическую задачу в контексте проб­лемной ситуа­ции в других дисциплинах, в окружающей жизни.

Иметь первоначальные представле­ния об идеях и о мето­дах математики как уни­версальном языке науки и техники, сред­стве моделирования явлений и процес­сов.

  1. Измерение геометрических величин (35ч)

Длина отрезка. Длина ломаной. Пери­метр много­угольника.

Расстояние от точки до прямой. Расстоя­ние между параллельными пря­мыми.

Длина окружности, число л; длина дуги окруж­ности.

Градусная мера угла, соответствие ме­жду величи­ной центрального угла и дли­ной дуги окружности.

Понятие площади плоских фигур. Равно­состав­ленные и равновеликие фигуры. Пло­щадь прямоугольни­ка. Пло­щади параллело­грамма, треугольника и трапе­ции (основные формулы). Фор­мулы, выражающие площадь треуголь­ника через две стороны и угол меж­ду ними, через периметр и радиус вписан­ной окруж­ности; формула Герона. Пло­щадь много­угольника. Площадь круга и площадь сектора. Соотношение меж­ду площадями по­добных фигур

Объяснять и иллюстриро­вать понятие периметра много­угольника.

Формулировать определения расстояния между точ­ка­ми, от точки до прямой, между парал­лельными пря­мыми.

Формулировать и объяснять свойства длины, гра­дус­ной меры угла, площади.

Формулировать соответствие между величиной централь­ного угла и длиной дуги окруж­ности.

Объяснять и иллюстриро­вать понятия равновеликих и равносоставленных фигур.

Выводить формулы площадей прямоугольника, па­ралле­ло­грамма, треугольника и трапе­ции, а также фор­мулу, выра­жающую площадь треуголь­ника через две сто­роны и угол между ними, длину окружно­сти, пло­щадь круга.

Находить площадь многоуголь­ника разбиением на тре­угольники и четырех­угольники.

Объяснять и иллюстриро­вать отношение площадей по­добных фигур.

Решать задачи на вычисление линейных величин, градус­ной меры угла и площадей треуголь­ников, четы­рехуголь­ников и многоугольников, длины окружности и площади круга. Опираясь на данные ус­ловия задачи, на­ходить воз­можности применения необхо­димых фор­мул, преобразовы­вать формулы.

Использовать формулы для обоснования дока­затель­ных рассуждений в ходе решения.

Интерпретиро­вать получен­ный результат и сопо­став­лять его с условием задачи

Умение видеть математическую задачу в контексте проб­лемной ситуа­ции в других дисциплинах, в окружающей жизни.

Иметь первоначальные представле­ния об идеях и о мето­дах математики как уни­версальном языке науки и техники, сред­стве моделирования явлений и процес­сов

  1. Координаты (10ч)

Декартовы координаты на плоскости. Уравне­ние прямой. Координаты сере­дины отрезка. Формула рас­стояния ме­жду двумя точками плоскости. Уравне­ние окружности

Объяснять и иллюстриро­вать понятие декартовой сис­темы координат.

Выводить и использовать формулы координат се­ре­дины отрезка, расстояния между двумя точками пло­скости, урав­нения прямой и окружно­сти.

Выполнять проекты по темам использования коор­динат­ного метода при решении задач на вычисления и доказательства

Умение видеть математическую задачу в контексте проб­лемной ситуа­ции в других дисциплинах, в окружающей жизни.

Иметь первоначальные представле­ния об идеях и о мето­дах математики как уни­версальном языке науки и техники, сред­стве моделирования явлений и процес­сов

  1. Векторы (10ч)

Вектор. Координаты вектора на плоскости. Длина (модуль) вектора. Равен­ство векто­ров. Угол между векторами. Операции над векторами: ум­ножение вектора на число, сложение, скалярное произведение

Формулировать определения и иллюстрировать по­нятия век­тора, длины (модуля) век­тора, коллинеарных векторов, равных векторов.

Вычислять длину и коорди­наты вектора.

Находить угол между векто­рами.

Выполнять операции над век­торами.

Выполнять проекты по темам использования вектор­ного ме­тода при решении задач на вы­числения и доказа­тельства

Умение понимать и использовать математические сред­ства наглядно­сти.

Умение применять индуктивные и дедуктивные спосо­бы рассужде­ний, ви­деть различные стратегии решения задач.

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера;

Резерв времени - 10ч


VII. Описание учебно-методического и материально-технического обеспече­ния образователь­ного процесса

Оснащение процесса обучения математике обеспечивается библио­течным фондом, печатными пособиями, а также информационно-комму­никативными средствами, экранно-звуковыми пособиями, техническими средствами обучения, учебно-практическим и учебно-лабораторным обо­рудованием.

В библиотечный фонд входят Стандарт по математике, примерные программы, авторские программы, комплекты учебников, рекомендован­ных или допущенных Министерством образования и науки Российской Федерации. В состав библиотечного фонда входят ра­бочие тетради, дидактические материалы, сборники контрольных и са­мостоятельных работ, практикумы по решению задач, соответствующие используемым комплектам учебников; сборники заданий, обеспечиваю­щих диагностику и контроль качества обучения в соответствии с требо­ваниями к уровню подготовки выпускников, закрепленными в Стандарте по математике; учебная литература, необходимую для подготовки докла­дов, сообщений, рефератов, творческих работ.

В комплект печатных пособий включены таблицы по математике, в которых представлены правила действий с числами, таблицы метрических мер, основные сведения о плоских и пространственных геометрических фигурах, основные математические формулы, соотношения, законы, графики функций.

Информационные средства обуче­ния - мультимедийные обучающие программы и электронные учебные издания, ориентированные на систему дистанционного обучения либо имеющие проблемно-тематический характер и обеспечивающие дополни­тельные условия для изучения отдельных тем и разделов Стандарта. Эти пособия предоставляют техническую возможность построения системы текущего и итогового контроля уровня подготовки учащихся (в том числе в форме тестового контроля). Инструментальная среда предоставляет возможность построения и исследования геомет­рических чертежей, графиков функций, проведения числовых и вероят­ностно-статистических экспериментов.

Минимальный набор учебного оборудования включает:

Библиотечный фонд

  • -нормативные документы: Примерная программа основного общего образования по математике, Планируемые результаты освоения программы основного общего образования по математике;

  • -авторские программы по курсам математики;

  • -учебники: по математике для 5-6 классов, по алгебре и геометрии для 7-9 классов;

  • -учебные пособия: рабочие тетради, дидактические материалы, сборники контрольных работ;

  • -пособия для подготовки и/или проведения государственной аттестации по математике за курс основной школы;

  • -учебные пособия по элективным курсам;

  • -научная, научно-популярная, историческая литература;

  • -справочные пособия (энциклопедии, словари, справочники по математике и т.п.);

  • -методические пособия для учителя.