ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 22.11.2023
Просмотров: 526
Скачиваний: 3
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Вопросы по разделу «водоросли».
-
Понятие об автотрофных, гетеротрофных и симбиотрофных организмах, их роль в круговороте веществ и энергии в биосфере. Роль растительного покрова в биосфере Земли. Космическая (планетарная) роль земных растений. Значение растений в жизни человека.
Автотрофы – это живые организмы, которые умеют сами создавать органические вещества из неорганических. То есть они «кормят себя» сами – «автоматически».
Гетеротрофные организмы — гетеротрофы, организмы, использующие для своего питания готовые органические соединения
Симбиотрофы — организмы, которые, питаясь соками или выделениями организма-хозяина, выполняют вместе с этим и жизненно важные для него трофические функции: мицелиальные грибы, образующие микоризу, участвующую в корневом питании многих растений; клубеньковые бактерии бобовых, связывающие молекулярный азот.
Растения являются первоисточником существования, процветания и развития жизни на Земле и в первую очередь благодаря их свойству осуществлять фотосинтез. В процессе фотосинтеза зеленые растения из углекислого газа и воды создают органические вещества (более 177 млрд. т в год), служат источником ценных продуктов питания (зерна, плодов, овощей и т.д.), сырья для промышленности и строительства.
В прямой зависимости от растений находится формирование газового состава атмосферного воздуха. В процессе фотосинтеза зеленые растения выделяют около 5·1011 т свободного кислорода в год. 1 га кукурузы выделяет за год 15 т кислорода, что достаточно для дыхания 30 человек. Весь кислород атмосферы проходит через зеленое вещество примерно за 2000 лет. За 300 лет растения усваивают столько углерода, сколько его содержится в атмосфере и водах.
Растения участвуют в образовании гумуса, который обеспечивает высокое плодородие почвы. Растения добывают из почвы или водной среды элементы, которые входят в состав молекул органических веществ (C, H, O, N, P, S, Fe, Co, mg, Cu), и передают их животным. Животные после отмирания передают минеральные вещества обратно в почву, откуда они вновь всасываются растениями. Растения в процессе вымывания как бы изымают минеральные вещества и постоянно поддерживают их в почве, что является важным для ее плодородия.
Растительность оказывает большое влияние на климат, водоемы, животный мир и другие элементы биосферы, с которыми она тесно взаимосвязана. От характера растительности во многом зависит и характер биоценоза, экосистемы, их морфологическая и функциональная структура, биогеоценотическая деятельность компонентов.
Космическая Роль: растения улавливают солнечную энергию(из космоса), и превращают её в хим. Энергию сахаров. Глобальная фиксация уг.газа на земле около 275 млрд тонн в год; образование озонового экрана; поддержание газового состава атмосферы. Выделяют пять аспектов космической и планетарной роли растений, которые рассмотрены ниже:
Человек питается растениями, делает из них лекарственные средства, получает древесину, изготавливает ткани и бумагу.
2. Традиционные и современные представления о таксономической принадлежности водорослей. Определения понятия «растение» на разных этапах развития биологии.
Во́доросли (лат. Algae) — гетерогенная экологическая группа преимущественно фотоавтотрофных одноклеточных, колониальных или многоклеточных организмов, обитающих, как правило, в водной среде, в систематическом отношении представляющая собой совокупность многих отделов. Вступая в симбиоз с грибами, эти организмы в ходе эволюции образовали совершенно новые организмы — лишайники. Наука о водорослях называется альгологией.
Таксономические категории: отдел, класс, порядок, семья, род, вид.
Расте́ния (лат. Plantae) — биологическое царство, одна из основных групп многоклеточных организмов, отличительной чертой представителей которой является способность к фотосинтезу, включающая в себя в том числе мхи, папоротники, хвощи, плауны, голосеменные и цветковые растения. Нередко к растениям относят также все водоросли или некоторые их группы. Растения (в первую очередь, цветковые) представлены многочисленными жизненными формами, наиболее распространёнными из которых являются деревья, кустарники и травы.
Растения являются объектом исследования науки ботаники.
3. Таксономические ранги ботанической номенклатуры (рассказывать на примере конкретного вида). Таксономическая принадлежность водорослей на разных этапах развития биологии.
- Таксономические ранги ботанической номенклатуры:
Таксономия – раздел биологии, название видов и их отношение к различным группам (таксонам)
Пример систематического положения вида:
Надцарство (домен) Eucariota – Эукариоты
Царство Plantae – Растения
Отдел Magnoliophyta – Покрытосеменные (цветковые)
Класс Magnoliopsida – Двудомные
Порядок Fabales – Бобоцветные
Семейство Fabaceae – Бобовые
Род Trifolium – Клевер
Вид Trifolium pretense – Клевер луговой
4.Происхождение растений из разных царств, с позиций теории симбиогенеза. Первичный и вторичный эндосимбиоз. Основные таксоны, включающие растения.
Теория симбиогене́за (симбиотическая теория, эндосимбиотическая теория, теория эндосимбиоза) объясняет механизм возникновения некоторых органоидов эукариотической клетки — митохондрий, гидрогеносом и пластид.
Теорию эндосимбиотического происхождения хлоропластов впервые предложил в 1883 году Андреас Шимпер, показавший их саморепликацию внутри клетки. Её возникновению предшествовал вывод А. С. Фаминцына и О. В. Баранецкого о двойственной природе лишайников — симбиотического комплекса гриба и водоросли (1867 год). К. С. Мережковский в 1905 году предложил само название «симбиогенез», впервые детально сформулировал теорию и даже создал на её основе новую систему органического мира. Фаминцын в 1907 году, опираясь на работы Шимпера, также пришёл к выводу, что хлоропласты являются симбионтами, как и водоросли в составе лишайников.
В 1920-е годы теория была развита Б. М. Козо-Полянским, было высказано предположение, что симбионтами являются и митохондрии. Затем долгое время о симбиогенезе практически не упоминали в научной литературе. Второе рождение расширенная и конкретизированная теория получила уже в работах Линн Маргулис начиная с 1960-х годов.
В результате изучения последовательности оснований в митохондриальной ДНК были получены весьма убедительные доводы в пользу того, что митохондрии — это потомки аэробных бактерий (прокариот), родственных риккетсиям, поселившихся некогда в предковой эукариотической клетке и «научившимися» жить в ней в качестве симбионтов (организмов, участвующих в симбиозе). Теперь митохондрии есть почти во всех эукариотических клетках, размножаться вне клетки они уже не способны.
Существуют свидетельства того, что первоначально эндосимбиотические предки митохондрий не могли ни импортировать белки, ни экспортировать АТФ[4]. Вероятно, первоначально они получали от клетки-хозяина пируват, а выгода для хозяина состояла в обезвреживании аэробными симбионтами токсичного для нуклеоцитоплазмы кислорода.
Пластиды, подобно митохондриям, имеют свои собственные прокариотические ДНК и рибосомы. По-видимому, хлоропласты произошли от фотосинтезирующих бактерий, поселившихся в своё время в гетеротрофных клетках протистов, превратив их в автотрофные водоросли.
Доказательства
Митохондрии и пластиды:
имеют две полностью замкнутые мембраны. При этом внешняя сходна с мембранами вакуолей, внутренняя — бактерий.
размножаются бинарным делением (причём иногда делятся независимо от деления клетки) и не образуются de novo, то есть не путем синтеза из других органоидов, как, например, лизосома, образующаяся из комплекса Гольджи, а он, в свою очередь, из ЭПС
генетический материал — кольцевая ДНК, не связанная с гистонами (По доле ГЦ ДНК митохондрий и пластид ближе к ДНК бактерий, чем к ядерной ДНК эукариот)
имеют свой аппарат синтеза белка — рибосомы и др.
рибосомы прокариотического типа — c константой седиментации 70S. По строению 16s рРНК близки к бактериальной.
некоторые белки этих органелл похожи по своей первичной структуре на аналогичные белки бактерий и не похожи на соответствующие белки цитоплазмы.
Проблемы
ДНК митохондрий и пластид, в отличие от ДНК большинства прокариот, содержат интроны.
В собственной ДНК митохондрий и хлоропластов закодирована только часть их белков, а остальные закодированы в ДНК ядра клетки. В ходе эволюции происходило «перетекание» части генетического материала из генома митохондрий и хлоропластов в ядерный геном. Этим объясняется тот факт, что ни хлоропласты, ни митохондрии не могут более существовать (размножаться) независимо.
Не решён вопрос о происхождении ядерно-цитоплазматического компонента (ЯЦК), захватившего прото-митохондрии. Ни бактерии, ни археи не способны к фагоцитозу, питаясь исключительно осмотрофно. Молекулярно-биологические и биохимические исследования указывают на химерную архейно-бактериальную сущность ЯЦК. Как произошло слияние организмов из двух доменов, также не ясно.
Первый этап эволюции пластид: первичный эндосимбиоз. Возникший в результате первичного эндосимбиоза организм дал начало трем эволюционным ветвям.
Второй этап эволюции пластид: вторичный эндосимбиоз. В ходе него красные водоросли сами превратились в клеточные органеллы внутри других эукариотических организмов. В результате получилось что-то вроде матрешки: в одном эукариоте скрывается другой, в котором, в свою очередь, «сидят» останки древнего прокариота.
Эндосимбиоз — наиболее широко признанная версия происхождения митохондрий и пластид. Но попытки объяснить подобным образом происхождение других органелл и структур клетки не находят достаточных доказательств и наталкиваются на обоснованную критику.
Растения, имеющие сходные признаки, объединяют в группы, называемые видами. Если у вида нет близких сородичей, он образует самостоятельный, так называемый монотипный род.
Систематика растений представляет собой иерархическую систему из групп различного ранга, то есть из семейств составляются порядки, а из порядков — классы. Независимо от ранга каждая такая группа называется таксоном. Принципами выделения и классификацией таксонов занимается особая научная дисциплина — таксономия.
Систематика — необходимая основа любой отрасли ботаники, так как она характеризует взаимосвязи между разнообразными растениями и даёт растениям официальные названия, позволяющие специалистам различных стран обмениваться научной информацией.
5.Общий план строения растительных клеток, их отличие от клеток бактерий, животных и грибов. Особенности строения клеток водорослей из разных царств. Происхождение хлоропластов.
Кле́тка (лат. cellula, греч. κύτος) — структурно-функциональная элементарная единица строения и жизнедеятельности всех организмов. Обладает собственным обменом веществ, способна к самовоспроизведению. Организм, состоящий из одной клетки, называется одноклеточным (многие простейшие и бактерии). Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, называется цитологией. Также принято говорить о биологии клетки, или клеточной биологии.
Все клеточные формы жизни на Земле можно разделить на два надцарства на основании строения составляющих их клеток:
• прокариоты (доядерные) — более простые по строению, возникли в процессе эволюции раньше;
• эукариоты (ядерные) — более сложные, возникли позже. Клетки всех нынешних растений, животных, грибов и протистов — эукариотические.
Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам.