Файл: Рабочая программа педагога винтер Натальи Николаевны учителя математики 1 квалификационной категории по курсу алгебра 8 класс.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 23.11.2023
Просмотров: 55
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Муниципальное автономное общеобразовательное учреждение
«Средняя общеобразовательная школа»
с. Грузино Чудовского района
РАБОЧАЯ ПРОГРАММА ПЕДАГОГА
Винтер Натальи Николаевны
учителя математики 1 квалификационной категории
по курсу алгебра 8 класс
с. Грузино
2022- 2023 уч.год
Содержание
Пояснительная записка.
-Цели и задачи учебного предмета
-Общая характеристика учебного предмета
-Место учебного предмета в учебном плане.
-Ценностные ориентиры содержания учебного предмета.
-Требования к уровню подготовки учащихся к окончанию 8 класса.
-Контрольно-измерительные материалы.
-Учебно-тематический план.
-Содержание учебного предмета.
- Календарно-тематическое планирование.
-Материально-техническое обеспечение.
-Учебно-методический комплект
Пояснительная записка
Рабочая программа учебного курса геометрии для 7 класса составлена на основе:
- Федерального компонента государственного стандарта основного общего образования по математике, утверждённого приказом Минобразования России от 5.03.2014г.№1089.
- авторской рабочей программы для общеобразовательных учреждений по алгебре 7-9 классы к учебному комплекту по алгебре для 7-9 классов, авторы Макарычев Ю. Н.), составитель Бурмистрова Т.А.- М: Просвещение, 2009.
-учебного плана МАОУ «СОШ с.Грузино»
Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
-
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей; -
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов; -
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса; -
развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса учащиеся овладевают приёмами вычислений на калькуляторе. -
Задачи программы:
-
овладение системой математических знаний и умений, необходимых для применения практической деятельности изучения смежных дисциплин, продолжения образования; -
овладение навыками дедуктивных рассуждений; -
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, необходимой, в частности, для освоения курса информатики; -
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов; -
получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и т.д.); -
воспитание культуры личности, отношения к математике как части общечеловеческой культуры, понимание значимости математики для научно технического прогресса; -
развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами.
Общая характеристика учебного предмета
Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.
Алгебра Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.
Геометрия— один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
Таким образом, в ходе освоения содержания курса учащиеся получают возможность:
-
развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру; -
овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач; -
изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей; -
развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами; -
получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер; -
развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства; -
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
В курсе алгебры 8 класса вырабатывается умение выполнять тождественные преобразования рациональных выражений; систематизируются сведения о рациональных числах и даётся представление об иррациональных числах, расширяется тем самым понятие о числе; вырабатывается умение выполнять преобразования выражений, содержащих квадратные корни; вырабатываются умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач; знакомятся учащиеся с применением неравенств для оценки значений выражений, вырабатывается умение решать линейные неравенства с одной переменной и их системы; вырабатывается умение применять свойства степени с целым показателем в вычислениях и преобразованиях, формируются начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.
Место предмета в базисном учебном плане
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение алгебры отводится 105 часов.
Ценностные ориентиры содержания учебного предмета.
Математика играет важную роль в общей системе образования. Но математика в школе – не наука и даже не основа науки, а учебный предмет.
В учебном предмете, в отличие от науки, мы не обязаны все доказывать. Более того, в ряде случаев правдоподобные рассуждения или толкования, опирающиеся на графические модели, на интуицию, имеют для школьников более весомую общекультурную ценность, чем формальные доказательства. Сложные математические понятия вводятся:
- когда у учащихся накоплен достаточный опыт для адекватного восприятия вводимого понятия – опыт, содействующий пониманию всех слов, содержащихся в определении (вербальный опыт), и опыт использования понятия на наглядно-интуитивном и рабочем уровнях (генетический опыт);
- когда у учащихся появилась потребность в формальном определении понятия.
Владение математическим языком и математическим моделированием позволяет ученику лучше ориентироваться в природе и обществе, способствует развитию речи не в меньшей степени, чем уроки русского языка и литературы. Математика – предмет, который позволяет ученику правильно ориентироваться в окружающей действительности и «ум в порядок приводит».
Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, развивает воображение, пространственные представления. История развития математического знания дает возможность пополнить запас историко-научных знаний учащихся, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, судьбами великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.
Одной из основных задач изучения геометрии является развитие логического мышления, необходимого, в частности, для освоения курса информатики, физики, овладения навыками дедуктивных рассуждений. Преобразование геометрических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству.
Образовательные и воспитательные задачи обучения геометрии должны решаться комплексно с учетом возрастных особенностей обучающихся, специфики геометрии как учебного предмета, определяющего её роль и место в общей системе школьного обучения и воспитания. При планировании уроков следует иметь в виду, что теоретический материал осознается и усваивается преимущественно в процессе решения задач. Организуя решение задач, целесообразно шире использовать дифференцированный подход к учащимся. Важным условием правильной организации учебно-воспитательного процесса является выбор учителем рациональной системы методов и приемов обучения, сбалансированное сочетание традиционных и новых методов обучения, оптимизированное применение объяснительно-иллюстрированных и эвристических методов, использование технических средств, ИКТ -компонента. Учебный процесс необходимо ориентировать на рациональное сочетание устных и письменных видов работы, как при изучении теории, так и при решении задач.
Требования к уровню подготовки обучающихся в 8 классе
УУД
Регулятивные:
– самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;
– выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;
– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
– работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);
– планировать свою индивидуальную образовательную траекторию;
– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;