ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.11.2023
Просмотров: 367
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
30. Природа света.
Чувствительность нашего зрительного аппарата к свету чрезвычайно велика. По современным измерениям для получения светового ощущения достаточно, чтобы на глаз при благоприятных обстоятельствах попадало около 10-17 Дж световой энергии в секунду, т. е. мощность, достаточная для ощутимого светового раздражения, равна 10-17 Вт.
Глаз принадлежит к числу самых чувствительных аппаратов, способных регистрировать присутствие света. Действие света на глаз сводится к некоторому химическому процессу, возникающему в чувствительной оболочке глаза и вызывающему раздражение зрительного нерва и соответствующих центров головного мозга. Химическое действие света, сходное с действиями на чувствительные элементы глаза, можно наблюдать при выцветании на свету различных красок («выгорание тканей»). Химические превращения наблюдаются при поглощении света сравнительно немногочисленными светочувствительными материалами. Но в большей или меньшей степени свет поглощается любым телом, что можно обнаружить по нагреванию тела.
Нагревание тел при поглощении света есть самый общий и наиболее легко осуществляемый процесс, который может быть использован для обнаружения и измерения световой энергии. Нагревание солнечным светом — простейший пример такого процесса. В тех южных областях, где много солнечных дней (например, Средняя Азия), тепло, полученное при поглощении солнечной энергии, может быть использовано для приведения в действие промышленных установок.
Энергия, доставляемая солнечным светом в южных широтах в ясный день, составляет более тысячи джоулей в секунду на каждый квадратный метр поверхности, так что плоский железный бак, поставленный на крыше дома, может снабжать его обитателей в течение лета горячей водой. Концентрируя солнечные лучи с помощью большого зеркала 1 (рис. 152) на поверхности какого-нибудь приемника 2, можно обеспечить его нагревание до высокой температуры.
Действие света может обнаруживаться и в некоторых электрических явлениях. Как уже упоминалось в томе II, § 9, освещение металлической поверхности может
Рис. 152. Схема устройства тепловой солнечной машины: 1 — зеркало,
2 — приемник
вызвать вырывание из нее электронов {фотоэффект). С помощью определенных устройств можно без труда наблюдать электрический ток, возникающий под действием света. На рис. 153 представлена схема одного из таких устройств,
называемого фотоэлементом. Если бы можно было покрыть крышу небольшого дома веществом, используемым в таком фотоэлементе, то в ясный солнечный день удалось бы за счет световой энергии получать электрический ток мощностью несколько киловатт.
Наконец, важно отметить, что наблюдается и непосредственное механическое действие света. Оно проявляется в давлении света на поверхность тела, отражающего или поглощающего свет. Придавая этому телу вид легкого подвижного крылышка, удалось обнару-
Рис. 153. Фотоэлемент с электрической схемой: 1 — фотоэлемент, 2 — гальванометр
жить поворот этого крылышка под действием падающего на него света. Этот замечательный опыт был впервые произведен П. Н. Лебедевым в Москве (1900 г.). Подсчет показывает, что в ясный день свет Солнца, падающий на зеркальную поверхность размером 1 м2, действует на нее с силой всего лишь около 4 мкН.
В настоящее время разработаны новые источники когерентного излучения очень высокой интенсивности — лазеры, с которыми при концентрации энергии на малую поверхность можно получить световое давление 106 атм (см. § 205). Таким образом, свет может производить весьма разнообразные действия; все они свидетельствуют о наличии энергии в световом излучении, превращение которой и обнаруживается во всех описанных явлениях.
Из перечисленных примеров видно, сколь разнообразны могут быть действия света. Однако роль света как непосредственного источника энергии сравнительно невелика: двигатели, основанные на нагревании под действием света, играют очень малую роль, а двигатели, построенные на основе фотоэффекта,— еще дело будущего, хотя опыты и показывают, что возможно изготовление фотоэлементов (с использованием полупроводников германия и кремния), способных превращать до 15% падающей на них энергии света непосредственно в энергию электрического тока (солнечные батареи).
Правда, вся энергия, которую мы используем на Земле, практически имеет своим первоисточником световую энергию или энергию излучения Солнца, но использование ее происходит путем сложных превращений через посредство топлива, накапливающегося под действием солнечного излучения в растениях и сжигаемого в тепловых машинах, а также через посредство водяных и ветряных двигателей и т. д. В большинстве же применений света главную роль играет не количество приносимой им энергии, а его специальные особенности. Для выяснения природы световых явлений надо обратиться к опыту.
31. Световой поток. Освещенность.
Световой поток. В § 65 мы указывали уже, что разнообразные действия света обусловлены в первую очередь наличием определенной энергии излучения (световой энергии).
Непосредственное восприятие света обусловлено действием световой энергии, поглощенной чувствительными элементами глаза. То же имеет место и в любом приемнике, способном реагировать на свет, например в фотоэлементе, термоэлементе и фотопластинке. Вследствие этого измерения света сводятся к измерению световой энергии или к
измерению величин, так или иначе с нею связанных. Отдел оптики, изучающий методы и приемы измерения световой энергии, называется фотометрией.
Выделим мысленно на пути света, распространяющегося от какого-либо источника S (рис. 154), небольшую площадку . Через эту площадку за время tпройдет некоторая энергия излучения W. Для того чтобы измерить эту энергию, надо представить себе эту площадку в виде пленки, покрытой веществом, полностью поглощающим всю падающую на него энергию излучения, например сажей, и измерить поглощенную энергию по нагреванию этой пленки. Отношение
(68.1)
Рис. 154. Поток световой энергии, излучаемой источником S, проходит через площадку
показывает, какая энергия протекает через площадку за единицу времени, и называется потоком излучения (мощностью излучения)
через площадку о. Напомним, что мощность, переносимую световой волной через единичную площадку, называют интенсивностью волны (см. § 39).
Поток излучения оценивается в обычных единицах мощности, т. е. в ваттах, а интенсивность излучения — в ваттах на квадратный метр. Однако для восприятия и использования световой энергии исключительно важную роль играет глаз. Поэтому наряду с энергетической оценкой света пользуются оценкой, основанной на непосредственном световом восприятии глаза. Поток излучения, оцениваемый по зрительному ощущению, называется световым потоком.
Таким образом, в световых измерениях используются две системы обозначений и две системы единиц; одна из них основана на энергетической оценке света, другая — на оценке света по зрительному ощущению.
Так как чувствительность глаза к свету разной длины волны (разного цвета) весьма различна, то энергетическая оценка света и оценка светового потока по зрительному ощущению могут существенно отличаться. Так, при одной и той же мощности излучения зрительное ощущение от лучей зеленого цвета будет примерно в 100 раз больше, чем от лучей красного или сине-фиолетового цвета. Поэтому для зрительной оценки световых потоков необходимо знать чувствительность глаза к свету различной
Рис. 155. Кривая относительной спектральной чувствительности глаза
длины волны или так называемую кривую относительной спектральной чувствительности глаза, изображенную на рис. 155. На этой кривой показана относительная чувствительность vчеловеческого глаза в зависимости от длины волны . Если чувствительность глаза для длины волны =555 нм=5550 Å *) (зеленый свет) принять за единицу, то для более длинных и более коротких волн чувствительность быстро уменьшается, как и показано на кривой.
*) Значок Å обозначает длину, равную 10-10 м=0,1 нм. Эта единица получила название ангстрем в честь шведского ученого К. Ангстрема (1814—1874).
Так, для =510 нм и для =610 нм чувствительность будет равна 0,5 (т. е. уменьшается вдвое); для =470 нм (голубой) и =650 нм (оранжево-красный) чувствительность составит около 0,1; для =430 нм (сине-фиолетовый) и =675 нм (красный) — примерно 0,01 и т. д.
Кривые чувствительности глаза различных людей несколько различны, особенно в области малых чувствительностей. Кривая, приведенная на рис. 155, получена на основании многочисленных измерений; она характеризует чувствительность среднего нормального глаза и утверждена Международным комитетом по стандартам.
§ 69. Точечные источники света. Все вопросы, связанные с определением световых величин, особенно просто решаются в том случае, когда источник излучает свет равномерно во всех направлениях. Таким источником является, например, раскаленный металлический шарик. Подобный шарик посылает свет равномерно во все стороны; световой поток от него распределен равномерно по всем направлениям. Это означает, что действие источника на какой-либо приемник света будет зависеть только от расстояния между приемником и центром светящегося шарика и не будет зависеть от направления радиуса, проведенного к приемнику из центра шарика.
Во многих случаях действие света изучается на расстоянии R, настолько превосходящем радиус rсветящегося шарика, что размеры последнего можно не учитывать. Тогда можно считать, что излучение света происходит как бы из одной точки — центра светящегося шара. В подобных случаях источник света называется точечным источником.
Само собой разумеется, что точечный источник не является точкой в геометрическом смысле, а имеет, как и всякое физическое тело, конечные размеры. Источник излучения исчезающе малых размеров не имеет физического смысла, ибо такой источник должен был бы с единицы своей поверхности излучать бесконечно большую мощность, что невозможно.
Более того, источник, который мы можем считать точечным, не всегда должен быть малым. Дело не в абсолютных размерах источника, а в соотношении между его размерами и теми расстояниями от источника, на которых исследуется его действие. Так, для всех практических задач наилучшим образцом точечных источников являются звезды; хотя они имеют огромные размеры, расстояния от них до Земли во много раз превосходят эти размеры.
Необходимо также помнить, что прообразом точечного источника является равномерно светящийся шарик. Поэтому источник света, посылающий свет неравномерно в разные стороны, не является точечным, хотя бы он был и очень маленьким по сравнению с расстоянием до точки наблюдения.
Определим более точно, что понимается под равномерным излучением света во все стороны. Для этого надо воспользоваться представлением о телесном угле , который равен отношению площади поверхности с, вырезанной на сфере конусом с вершиной в точке S, к квадрату радиуса rсферы (рис. 156):