ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.11.2023
Просмотров: 371
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Рис. 324 дает пример такого спектра, наблюдаемого при свечении пара иода.
§ 174. Происхождение спектров различных типов. Исследование показало, что тип спектра определяется характером светящегося объекта.
Сплошные спектры получаются в результате свечения твердых или жидких тел. В пламени свечи светятся раскаленные частицы угля, в электрической лампочке — накаленная металлическая нить. Такие же спектры дают и расплавленные металлы, а также светящиеся газы или пары, если они обладают значительной плотностью, т. е. находятся под очень высоким давлением. В частности, сплошной спектр Солнца представляет собой, по-видимому, свечение паров высокой плотности.
Линейчатые и полосатые спектры характерны для свечения газов или паров малой плотности. Линейчатые спектры испускаются светящимися атомами. Многие газы состоят из отдельных атомов, например пары металлов и так называемые инертные газы — гелий, неон, аргон и др. Газы, состоящие из молекул, например водород, кислород, пар иода и др., могут при возбуждении распадаться на атомы (диссоциировать). Такие атомарные газы дают линейчатые спектры. Но можно вызвать свечение и целых молекул, не разбивая их на атомы. В таком случае испускаются полосатые спектры. При возбуждении таких многоатомных газов или паров нередко происходит частичная диссоциация и наблюдается одновременно и линейчатый и полосатый спектры.
Свечение атомов и молекул в парах и газах можно вызвать нагреванием. Например, в пламени газовой горелки можно наблюдать полосы, соответствующие свечению молекул циана, представляющих соединение углерода и азота (CN). Если в пламя внести крупинку поваренной соли (хлористого натрия, NaCl), то пламя окрашивается в интенсивный желтый цвет, и спектральный аппарат обнаруживает в желтой части спектра две близко расположенные линии, характерные для спектра паров натрия. Это означает, что в пламени горелки молекулы хлористого натрия распались на атомы натрия и хлора, свечение атомов натрия легко наблюдается, свечение же атомов хлора возбудить не легко, и оно обычно слишком слабо. Гораздо чаще для возбуждения спектров атомов и молекул пользуются явлениями электрического разряда в газах. В этом случае трубка с электродами, через которую пропускают электрический ток, наполняется газом при низком давлении.
В этих условиях разряд имеет характер тлеющего (см. т. II, § 100). Нередко трубке тлеющего разряда придают форму, указанную на рис. 325, с тем чтобы сконцентрировать свечение в узкой части, что удобно для освещения щели спектрографа. На этом рисунке 1 — электроды, 2 — узкая часть, где плотность тока (т. е. ток, рассчитанный на единицу площади) и яркость свечения имеют наибольшее значение. Для той же цели может служить электрическая искра или дуга между исследуемыми электродами.
Если повышать давление светящегося пара или газа, то спектральные линии начинают расширяться, захватывая
Рис. 325. Трубка тлеющего разряда
больший спектральный интервал. При очень больших давлениях (сотни и больше атмосфер) линейчатый спектр постепенно переходит в сплошной, характерный для сжатых газов.
Спектр (лат. spectrum «виде́ние») в физике — распределение значений физической величины (обычно энергии, частоты или массы). Графическое представление такого распределения называется спектральной диаграммой[источник не указан 1033 дня]. Обычно под спектром подразумевается электромагнитный спектр — спектр частот (или то же самое, что энергий квантов) электромагнитного излучения.
В научный обиход термин спектр ввёл Ньютон в 1671—1672 годах для обозначения многоцветной полосы, похожей на радугу, которая получается при прохождении солнечного луча через треугольную стеклянную призму.[1]
По характеру распределения значений физической величины спектры могут быть дискретными (линейчатыми), непрерывными (сплошными), а также представлять комбинацию (наложение) дискретных и непрерывных спектров.
Примерами линейчатых спектров могут служить масс-спектры и спектры связанно-связанных электронных переходов атома; примерами непрерывных спектров — спектр электромагнитного излучения нагретого твердого тела и спектр свободно-свободных электронных переходов атома; примерами комбинированных спектров — спектры излучения звёзд, где на сплошной спектр фотосферы накладываются хромосферные линии поглощения или большинство звуковых спектров.
Другим критерием типизации спектров служат физические процессы, лежащие в основе их получения. Так, по типу взаимодействия излучения с материей, спектры делятся на эмиссионные (спектры излучения), адсорбционные (спектры поглощения) и спектры рассеивания.
63. Дисперсия показателя преломления различных материалов. Коэффициенты поглощения, отражения и пропускания.
Дисперсия показателя преломления различных материалов. Измерения показателя преломления в зависимости от длины волны для разных веществ показывают, что дисперсия различных материалов может быть весьма различна. В табл. 9 приведены в качестве примера значения
*) Дисперсия — лат. dispersus — рассеянный, разбросанный. Наблюдавшееся Ньютоном явление следует точнее называть дисперсией показателя преломления, ибо и другие оптические величины обнаруживают зависимость от длины волны (дисперсию).
Таблица 9. Зависимость показателя преломления от длины волны для разных веществ
показателя преломления в зависимости от длины волны для двух сортов стекла и двух различных жидкостей.
На рис. 311 изображено, как выглядел бы спектр солнечного света, полученный при помощи призм одинаковой формы, сделанных из перечисленных в таблице материалов.
Рис.311. Сравнительная дисперсия разных веществ: 1 — вода, 2 — легкий крон, 3 — тяжелый флинт. О темных линиях в спектре см. в § 178
Различие в дисперсии для разных стекол позволяет исправлять хроматическую аберрацию, как об этом упоминалось в § 106.
Отражающие и рассеивающие тела. Наряду с задачей концентрации светового потока нередко возникает потребность распределения этого потока на большую площадь с целью создания равномерной и умеренной освещенности. Для этой цели обычно заставляют световой поток отражаться и рассеиваться соответствующими поверхностями. Однако надо считаться с тем, что при этом лишь часть светового потока отражается или пропускается телом, часть же неминуемо поглощается.
Тот факт, что мы видим тела, связан с тем, что они различным образом отражают, преломляют и поглощают падающий на них свет. Если некоторое тело отражает свет сильнее, чем окружающие его тела, то оно представляется нам светлым на темном фоне. Если же тело отражает меньше света, чем окружающие его тела, то оно будет казаться нам темным. Например, белая бумага отражает свет сильнее, чем серый картон, и кусочек картона на листе бумаги кажется нам темным. Этот же кусочек картона, если его положить на черный бархат (очень слабо отражающее тело), кажется нам светлым. Тело, отражающее свет так же, как и окружающий фон, сливается с этим фоном.
Прозрачные тела мы видим частично в отраженном, частично в прошедшем через них свете. Рассматривая, например, такой, казалось бы, простой предмет, как граненая стеклянная пробка от графина, мы имеем дело с рядом сложных явлений: свет частично отражается от граней пробки или рассеивается, если ее грани матированы; часть света проходит сквозь пробку, преломляясь на ее поверхности. Если вполне прозрачное тело погрузить в жидкость с тем же показателем преломления, как у данного тела, то оно станет невидимым, так как световые лучи пройдут через него, не изменяя ни своего направления, ни интенсивности. Поглощение света ведет к потерям в световом потоке, энергия которого расходуется при этом главным образом на нагревание поглощающего тела. Как правило, стремятся избегать поглощения светового потока; иногда, впрочем, бывает необходимо обеспечить темный фон или устранить световые потоки нежелательного направления; при этом прибегают к сильно поглощающим покрытиям (например, чернение некоторых поверхностей внутри оптических приборов). Поглощение характеризуется коэффициентом поглощения а, равным отношению светового потока Ф, поглощенного телом, к световому потоку Фi, падающему на тело:
(76.1)
Отражение светового потока оценивается коэффициентом отражения , показывающим отношение отраженного потока Ф к падающему Фi, т. е.
(76.2)
Наконец, для характеристики пропускания света служит коэффициент пропускания , равный отношению пропущенного телом светового потока Ф к падающему Фi, т. е.
(76.3)
По закону сохранения энергии имеем
откуда на основании (76.1), (76.2) и (76.3) следует
(76.4)
Итак, сумма коэффициентов поглощения, отражения и пропускания равна единице. Коэффициенты , , зависят обычно от цвета (длины волны) света.
Как при отражении, так и при пропускании светового потока следует различать направленное и диффузное (рассеянное) отражение и пропускание.
Рис. 162. Отражение светового потока от плоской поверхности: а) направленное отражение; б) диффузное отражение; диаграмма б) не изменяется при изменении угла падения первичного пучка; в) направленное (зеркальное) отражение; параллельный пучок света, падающий на полированную металлическую поверхность, создает резко очерченный отраженный луч; г) диффузное отражение; при падении параллельного пучка световых лучей на белую бумагу свет отражается по всем направлениям
При зеркальном отражении от плоской поверхности телесный угол светового потока не изменяется (рис. 162, а, в). При рассеянном отражении происходит увеличение телесного угла, в котором распространяется световой поток (рис. 162, б, г).Увеличение может быть более или менее значительным в зависимости от свойств рассеивающей поверхности. Аналогично, направленное пропускание характеризуется сохранением телесного угла при прохождении потока сквозь тело, например прохождении света через плоскопараллельную пластинку (рис. 163, а). В противоположность этому диффузное пропускание
Рис. 163. Пропускание света плоскопараллельной пластинкой: а) направленное пропускание; б) диффузное пропускание. Диаграмма б) не меняется при изменении угла падения первичного пучка
сопровождается более или менее значительным увеличением телесного угла светового потока. Примером диффузно отражающей поверхности может служить матовая бумага; примером диффузно пропускающего материала — так называемые молочные стекла. Матовое стекло является одновременно и диффузным отражателем и диффузно пропускающей средой.
Рассеивающие свойства поверхности характеризуются диаграммами, подобными изображенным на рис. 162,
§ 174. Происхождение спектров различных типов. Исследование показало, что тип спектра определяется характером светящегося объекта.
Сплошные спектры получаются в результате свечения твердых или жидких тел. В пламени свечи светятся раскаленные частицы угля, в электрической лампочке — накаленная металлическая нить. Такие же спектры дают и расплавленные металлы, а также светящиеся газы или пары, если они обладают значительной плотностью, т. е. находятся под очень высоким давлением. В частности, сплошной спектр Солнца представляет собой, по-видимому, свечение паров высокой плотности.
Линейчатые и полосатые спектры характерны для свечения газов или паров малой плотности. Линейчатые спектры испускаются светящимися атомами. Многие газы состоят из отдельных атомов, например пары металлов и так называемые инертные газы — гелий, неон, аргон и др. Газы, состоящие из молекул, например водород, кислород, пар иода и др., могут при возбуждении распадаться на атомы (диссоциировать). Такие атомарные газы дают линейчатые спектры. Но можно вызвать свечение и целых молекул, не разбивая их на атомы. В таком случае испускаются полосатые спектры. При возбуждении таких многоатомных газов или паров нередко происходит частичная диссоциация и наблюдается одновременно и линейчатый и полосатый спектры.
Свечение атомов и молекул в парах и газах можно вызвать нагреванием. Например, в пламени газовой горелки можно наблюдать полосы, соответствующие свечению молекул циана, представляющих соединение углерода и азота (CN). Если в пламя внести крупинку поваренной соли (хлористого натрия, NaCl), то пламя окрашивается в интенсивный желтый цвет, и спектральный аппарат обнаруживает в желтой части спектра две близко расположенные линии, характерные для спектра паров натрия. Это означает, что в пламени горелки молекулы хлористого натрия распались на атомы натрия и хлора, свечение атомов натрия легко наблюдается, свечение же атомов хлора возбудить не легко, и оно обычно слишком слабо. Гораздо чаще для возбуждения спектров атомов и молекул пользуются явлениями электрического разряда в газах. В этом случае трубка с электродами, через которую пропускают электрический ток, наполняется газом при низком давлении.
В этих условиях разряд имеет характер тлеющего (см. т. II, § 100). Нередко трубке тлеющего разряда придают форму, указанную на рис. 325, с тем чтобы сконцентрировать свечение в узкой части, что удобно для освещения щели спектрографа. На этом рисунке 1 — электроды, 2 — узкая часть, где плотность тока (т. е. ток, рассчитанный на единицу площади) и яркость свечения имеют наибольшее значение. Для той же цели может служить электрическая искра или дуга между исследуемыми электродами.
Если повышать давление светящегося пара или газа, то спектральные линии начинают расширяться, захватывая
Рис. 325. Трубка тлеющего разряда
больший спектральный интервал. При очень больших давлениях (сотни и больше атмосфер) линейчатый спектр постепенно переходит в сплошной, характерный для сжатых газов.
Спектр (лат. spectrum «виде́ние») в физике — распределение значений физической величины (обычно энергии, частоты или массы). Графическое представление такого распределения называется спектральной диаграммой[источник не указан 1033 дня]. Обычно под спектром подразумевается электромагнитный спектр — спектр частот (или то же самое, что энергий квантов) электромагнитного излучения.
В научный обиход термин спектр ввёл Ньютон в 1671—1672 годах для обозначения многоцветной полосы, похожей на радугу, которая получается при прохождении солнечного луча через треугольную стеклянную призму.[1]
По характеру распределения значений физической величины спектры могут быть дискретными (линейчатыми), непрерывными (сплошными), а также представлять комбинацию (наложение) дискретных и непрерывных спектров.
Примерами линейчатых спектров могут служить масс-спектры и спектры связанно-связанных электронных переходов атома; примерами непрерывных спектров — спектр электромагнитного излучения нагретого твердого тела и спектр свободно-свободных электронных переходов атома; примерами комбинированных спектров — спектры излучения звёзд, где на сплошной спектр фотосферы накладываются хромосферные линии поглощения или большинство звуковых спектров.
Другим критерием типизации спектров служат физические процессы, лежащие в основе их получения. Так, по типу взаимодействия излучения с материей, спектры делятся на эмиссионные (спектры излучения), адсорбционные (спектры поглощения) и спектры рассеивания.
63. Дисперсия показателя преломления различных материалов. Коэффициенты поглощения, отражения и пропускания.
Дисперсия показателя преломления различных материалов. Измерения показателя преломления в зависимости от длины волны для разных веществ показывают, что дисперсия различных материалов может быть весьма различна. В табл. 9 приведены в качестве примера значения
*) Дисперсия — лат. dispersus — рассеянный, разбросанный. Наблюдавшееся Ньютоном явление следует точнее называть дисперсией показателя преломления, ибо и другие оптические величины обнаруживают зависимость от длины волны (дисперсию).
Таблица 9. Зависимость показателя преломления от длины волны для разных веществ
показателя преломления в зависимости от длины волны для двух сортов стекла и двух различных жидкостей.
На рис. 311 изображено, как выглядел бы спектр солнечного света, полученный при помощи призм одинаковой формы, сделанных из перечисленных в таблице материалов.
Рис.311. Сравнительная дисперсия разных веществ: 1 — вода, 2 — легкий крон, 3 — тяжелый флинт. О темных линиях в спектре см. в § 178
Различие в дисперсии для разных стекол позволяет исправлять хроматическую аберрацию, как об этом упоминалось в § 106.
Отражающие и рассеивающие тела. Наряду с задачей концентрации светового потока нередко возникает потребность распределения этого потока на большую площадь с целью создания равномерной и умеренной освещенности. Для этой цели обычно заставляют световой поток отражаться и рассеиваться соответствующими поверхностями. Однако надо считаться с тем, что при этом лишь часть светового потока отражается или пропускается телом, часть же неминуемо поглощается.
Тот факт, что мы видим тела, связан с тем, что они различным образом отражают, преломляют и поглощают падающий на них свет. Если некоторое тело отражает свет сильнее, чем окружающие его тела, то оно представляется нам светлым на темном фоне. Если же тело отражает меньше света, чем окружающие его тела, то оно будет казаться нам темным. Например, белая бумага отражает свет сильнее, чем серый картон, и кусочек картона на листе бумаги кажется нам темным. Этот же кусочек картона, если его положить на черный бархат (очень слабо отражающее тело), кажется нам светлым. Тело, отражающее свет так же, как и окружающий фон, сливается с этим фоном.
Прозрачные тела мы видим частично в отраженном, частично в прошедшем через них свете. Рассматривая, например, такой, казалось бы, простой предмет, как граненая стеклянная пробка от графина, мы имеем дело с рядом сложных явлений: свет частично отражается от граней пробки или рассеивается, если ее грани матированы; часть света проходит сквозь пробку, преломляясь на ее поверхности. Если вполне прозрачное тело погрузить в жидкость с тем же показателем преломления, как у данного тела, то оно станет невидимым, так как световые лучи пройдут через него, не изменяя ни своего направления, ни интенсивности. Поглощение света ведет к потерям в световом потоке, энергия которого расходуется при этом главным образом на нагревание поглощающего тела. Как правило, стремятся избегать поглощения светового потока; иногда, впрочем, бывает необходимо обеспечить темный фон или устранить световые потоки нежелательного направления; при этом прибегают к сильно поглощающим покрытиям (например, чернение некоторых поверхностей внутри оптических приборов). Поглощение характеризуется коэффициентом поглощения а, равным отношению светового потока Ф, поглощенного телом, к световому потоку Фi, падающему на тело:
(76.1)
Отражение светового потока оценивается коэффициентом отражения , показывающим отношение отраженного потока Ф к падающему Фi, т. е.
(76.2)
Наконец, для характеристики пропускания света служит коэффициент пропускания , равный отношению пропущенного телом светового потока Ф к падающему Фi, т. е.
(76.3)
По закону сохранения энергии имеем
откуда на основании (76.1), (76.2) и (76.3) следует
(76.4)
Итак, сумма коэффициентов поглощения, отражения и пропускания равна единице. Коэффициенты , , зависят обычно от цвета (длины волны) света.
Как при отражении, так и при пропускании светового потока следует различать направленное и диффузное (рассеянное) отражение и пропускание.
Рис. 162. Отражение светового потока от плоской поверхности: а) направленное отражение; б) диффузное отражение; диаграмма б) не изменяется при изменении угла падения первичного пучка; в) направленное (зеркальное) отражение; параллельный пучок света, падающий на полированную металлическую поверхность, создает резко очерченный отраженный луч; г) диффузное отражение; при падении параллельного пучка световых лучей на белую бумагу свет отражается по всем направлениям
При зеркальном отражении от плоской поверхности телесный угол светового потока не изменяется (рис. 162, а, в). При рассеянном отражении происходит увеличение телесного угла, в котором распространяется световой поток (рис. 162, б, г).Увеличение может быть более или менее значительным в зависимости от свойств рассеивающей поверхности. Аналогично, направленное пропускание характеризуется сохранением телесного угла при прохождении потока сквозь тело, например прохождении света через плоскопараллельную пластинку (рис. 163, а). В противоположность этому диффузное пропускание
Рис. 163. Пропускание света плоскопараллельной пластинкой: а) направленное пропускание; б) диффузное пропускание. Диаграмма б) не меняется при изменении угла падения первичного пучка
сопровождается более или менее значительным увеличением телесного угла светового потока. Примером диффузно отражающей поверхности может служить матовая бумага; примером диффузно пропускающего материала — так называемые молочные стекла. Матовое стекло является одновременно и диффузным отражателем и диффузно пропускающей средой.
Рассеивающие свойства поверхности характеризуются диаграммами, подобными изображенным на рис. 162,