Файл: Задача 1 Вычислить двойной интеграл от функции по заданной области . Решение Вид области представлен на рисунке.doc
Добавлен: 29.11.2023
Просмотров: 72
Скачиваний: 3
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
может принимать только два значения и , причём . Известны вероятность возможного значения , математическое ожидание и дисперсия . Найти закон (ряд) распределения этой случайной величины.
.
Решение
Сумма вероятностей всех возможных значений дискретной случайной величины должна быть равна единице, поэтому вероятность того, что примет значение равна: .
Тогда закон распределения :
По определению:
;
.
Напишем закон распределения
:
Найдём ,
тогда .
Имеем систему уравнений для нахождения и :
.
Решая систему, найдём: , и , . По условию , поэтому первое решение не подходит. Тогда закон распределения дискретной случайной величины имеет вид:
Задача №14
Случайная величина задана функцией распределения , требуется:
1) найти плотность вероятности;
2) математическое ожидание и дисперсию ;
3) построить графики функции распределения и функции плотности распределения.
.
Решение
Найдём плотность распределения. По определению:
.
Тогда
,
.
График функции распределения представлен на рисунке а)
Рисунок а
График функции плотности распределения представлен на рисунке б).
Рисунок б
Задача №15
Заданы математическое ожидание и средне квадратическое отклонение нормально распределённой величины . Найти: 1) вероятность того, что примет значение, принадлежащие интервалу ; 2) вероятность того, что абсолютная величина отклонения окажется меньше .
.
Решение
1) Воспользуемся формулой:
,
подставив
, получим:
.
По таблицам приложения находим ; . Тогда искомая вероятность равна:
.
2) Искомая вероятность находится по формуле:
.
По условию . Следовательно:
Задача №16
Провести исследование генеральной совокупности, используя выборочные данные соответствующего варианта.
1) Построить статистическое распределение выборки и гистограмму частот (шаг указан в варианте).
2) Дать точечные оценки генеральному среднему и дисперсии.
3) Предполагая, что выборка сделана из нормальной совокупности, построить доверительные интервалы для математического ожидания и дисперсии нормального распределения, приняв доверительную вероятность .
4) При уровне значимости =0,01 проверить гипотезу о нормальности генеральной совокупности, используя критерий согласия Пирсона [9].
Выборка объёма , начало первого интервала , шаг .
.
Решение
Сумма вероятностей всех возможных значений дискретной случайной величины должна быть равна единице, поэтому вероятность того, что примет значение равна: .
Тогда закон распределения :
По определению:
;
.
Напишем закон распределения
:
Найдём ,
тогда .
Имеем систему уравнений для нахождения и :
.
Решая систему, найдём: , и , . По условию , поэтому первое решение не подходит. Тогда закон распределения дискретной случайной величины имеет вид:
-
14
Задача №14
Случайная величина задана функцией распределения , требуется:
1) найти плотность вероятности;
2) математическое ожидание и дисперсию ;
3) построить графики функции распределения и функции плотности распределения.
.
Решение
Найдём плотность распределения. По определению:
.
Тогда
,
.
График функции распределения представлен на рисунке а)
Рисунок а
График функции плотности распределения представлен на рисунке б).
Рисунок б
Задача №15
Заданы математическое ожидание и средне квадратическое отклонение нормально распределённой величины . Найти: 1) вероятность того, что примет значение, принадлежащие интервалу ; 2) вероятность того, что абсолютная величина отклонения окажется меньше .
.
Решение
1) Воспользуемся формулой:
,
подставив
, получим:
.
По таблицам приложения находим ; . Тогда искомая вероятность равна:
.
2) Искомая вероятность находится по формуле:
.
По условию . Следовательно:
Задача №16
Провести исследование генеральной совокупности, используя выборочные данные соответствующего варианта.
1) Построить статистическое распределение выборки и гистограмму частот (шаг указан в варианте).
2) Дать точечные оценки генеральному среднему и дисперсии.
3) Предполагая, что выборка сделана из нормальной совокупности, построить доверительные интервалы для математического ожидания и дисперсии нормального распределения, приняв доверительную вероятность .
4) При уровне значимости =0,01 проверить гипотезу о нормальности генеральной совокупности, используя критерий согласия Пирсона [9].
Выборка объёма , начало первого интервала , шаг .
324 | 296 | 313 | 323 | 312 | 321 | 322 | 301 | 337 | 322 | 329 | 307 |
301 | 328 | 312 | 318 | 327 | 315 | 319 | 317 | 309 | 334 | 323 | 340 |
326 | 322 | 314 | 335 | 313 | 322 | 319 | 325 | 312 | 300 | 323 | 335 |
339 | 326 | 298 | 298 | 337 | 322 | 303 | 314 | 315 | 310 | 316 | 321 |
312 | 315 | 331 | 322 | 321 | 336 | 328 | 315 | 338 | 318 | 327 | 323 |
325 | 314 | 297 | 303 | 322 | 314 | 317 | 330 | 318 | 320 | 312 | 333 |
332 | 319 | 325 | 319 | 307 | 305 | 316 | 330 | 318 | 335 | 327 | 321 |
332 | 288 | 322 | 334 | 295 | 318 | 329 | 305 | 310 | 304 | 326 | 319 |
317 | 316 | 316 | 307 | 309 | 309 | 328 | 317 | 317 | 322 | 316 | 304 |
303 | 350 | 309 | 327 | 345 | 329 | 338 | 311 | 316 | 324 | 310 | 306 |
308 | 302 | 315 | 314 | 343 | 320 | 304 | 310 | 345 | 312 | 330 | 324 |
308 | 326 | 313 | 320 | 328 | 309 | 306 | 306 | 308 | 324 | 312 | 309 |
324 | 321 | 313 | 330 | 330 | 315 | 320 | 313 | 302 | 295 | 337 | 346 |
327 | 320 | 307 | 305 | 323 | 331 | 345 | 315 | 318 | 331 | 322 | 315 |
304 | 324 | 317 | 322 | 312 | 314 | 308 | 303 | 333 | 321 | 312 | 323 |
317 | 288 | 317 | 327 | 292 | 316 | 322 | 319 | 313 | 328 | 313 | 309 |
329 | 313 | 334 | 314 | 320 | 301 | 329 | 319 | 332 | 316 | 300 | 300 |
304 | 306 | 314 | 323 | 318 | 337 | 325 | 321 | 322 | 288 | 313 | 314 |
307 | 329 | 302 | 300 | 316 | 321 | 315 | 323 | 331 | 318 | 334 | 316 |
328 | 294 | 288 | 312 | 312 | 315 | 321 | 332 | 319 | | | |