Файл: Протокол от 2022 г. Согласовано Заместитель директора по увр.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 01.12.2023
Просмотров: 110
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Электромагнитные явления
Опыт Эрстеда. Магнитное поле. Магнитное поле прямого тока. Магнитное поле катушки с током. Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле Земли. Взаимодействие магнитов. Действие магнитного поля на проводник с током. Электрический двигатель.
Лабораторные работы и опыты
Исследование явления магнитного взаимодействия тел.
Исследование явления намагничивания вещества.
Исследование действия электрического тока на магнитную стрелку.
Изучение действия магнитного поля на проводник с током.
Изучение действия электродвигателя.
Сборка электромагнита и испытание его действия.
Изучение электрического двигателя постоянного тока (на модели).
Демонстрации
Опыт Эрстеда.
Магнитное поле тока.
Действие магнитного поля на проводник с током.
Взаимодействие постоянных магнитов.
Устройство и действие компаса.
Устройство электродвигателя.
Предметными результатами изучения темы являются:
-
понимание и способность объяснять физические явления: намагниченность железа и стали, взаимодействие магнитов, взаимодействие проводника с током и магнитной стрелки, действие магнитного поля на проводник с током -
владение экспериментальными методами исследования зависимости магнитного действия катушки от силы тока в цепи -
умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.
Световые явления
Источники света. Прямолинейное распространение света. Видимое движение светил. Отражение света. Закон отражения света. Плоское зеркало. Преломление света. Закон преломления света. Линзы. Фокусное расстояние линзы. Оптическая сила линзы. Изображения, даваемые линзой. Глаз как оптическая система. Оптические приборы.
Лабораторные работы и опыты
Изучение явления распространения света.
Исследование зависимости угла отражения света от угла падения.
Изучение свойств изображения в плоском зеркале.
Измерение фокусного расстояния собирающей линзы.
Получение изображений при помощи линзы.
Демонстрации
Прямолинейное распространение света.
Получение тени и полутени.
Отражение света.
Преломление света.
Ход лучей в собирающей линзе.
Ход лучей в рассеивающей линзе.
Получение изображений с помощью линз.
Принцип действия проекционного аппарата и фотоаппарата.
Модель глаза.
Предметными результатами изучения темы являются:
-
понимание и способность объяснять физические явления: прямолинейное распространения света, образование тени и полутени, отражение и преломление света -
умение измерять фокусное расстояние собирающей линзы, оптическую силу линзы -
владение экспериментальными методами исследования зависимости изображения от расположения лампы на различных расстояниях от линзы, угла отражения от угла падения света на зеркало -
понимание смысла основных физических законов и умение применять их на практике: закон отражения и преломления света, закон прямолинейного распространения света -
различать фокус линзы, мнимый фокус и фокусное расстояние линзы, оптическую силу линзы и оптическую ось линзы, собирающую и рассеивающую линзы, изображения, даваемые собирающей и рассеивающей линзой -
умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.
9 класс
Законы взаимодействия и движения тел
Материальная точка. Система отсчета.
Перемещение. Скорость прямолинейного равномерного движения.
Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение.
Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении.
Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира.
Инерциальная система отсчета. Первый, второй и третий законы Ньютона.
Свободное падение. Невесомость. Закон всемирного тяготения. [Искусственные спутники Земли.]
Импульс. Закон сохранения импульса. Реактивное движение.
Фронтальные лабораторные работы
1. Исследование равноускоренного движения без начальной скорости.
2. Измерение ускорения свободного падения.
Предметными результатами изучения темы являются:
-
понимание и способность описывать и объяснять физические явления:поступательное движение (назвать отличительный признак), смена дня и ночи на Земле, свободное падение тел. невесомость, движение по окружности с постоянной по модулю скоростью; -
знание и способность давать определения /описания физических понятий:относительность движения (перечислить, в чём проявляется), геоцентрическая и гелиоцентрическая системы мира; [первая космическая скорость], реактивное движение; физических моделей: материальная точка, система отсчёта, физических величин: перемещение, скорость равномерного прямолинейного движения, мгновенная скорость и ускорение при равноускоренном прямолинейном движении, скорость и центростремительное ускорение при равномерном движении тела по окружности, импульс; -
понимание смысла основныхфизических законов:динамики Ньютона, всемирного тяготения, сохранения импульса, сохранения энергии), умение применять их на практике и для решения учебных задач; -
умение приводить примеры технических устройств и живых организмов, в основе перемещения которых лежит принцип реактивного движения. Знание и умение объяснять устройство и действие космических ракет-носителей; -
умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана здоровья, техника безопасности и др.); -
умение измерять мгновенную скорость и ускорение при равноускоренном прямолинейном движении, центростремительное ускорение при равномерном движении по окружности.
Механическое колебание и волны. Звук
Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. [Гармонические колебания].
Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс.
Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и
периодом (частотой).
Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс. [Интерференция звука]
Фронтальные лабораторные работы
3. Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити.
Предметными результатами изучения темы являются:
-
понимание и способность описывать и объяснять физические явления:колебания нитяного (математического) и пружинного маятников, резонанс (в т. ч. звуковой), механические волны, длина волны, отражение звука, эхо; -
знание и способность давать определения физических понятий: свободные колебания, колебательная система, маятник, затухающие колебания, вынужденные колебания, звук и условия его распространения; физических величин:амплитуда, период, частота колебаний, собственная частота колебательной системы, высота, [тембр], громкость звука, скорость звука; физических моделей:[гармонические колебания], математический маятник; -
владение экспериментальными методами исследования зависимости периода колебаний груза на нити от длины нити.
Электромагнитное поле
Однородное и неоднородное магнитное поле.
Направление тока и направление линий его магнитного поля. Правило буравчика.
Обнаружение магнитного поля. Правило левой руки.
Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции.
Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние.
Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы.
Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения.
[Интерференция света.] Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Цвета тел. [Спектрограф и спектроскоп.] Типы оптических спектров. [Спектральный анализ.] Поглощение и испускание света атомами. Происхождение линейчатых спектров.
Фронтальные лабораторные работы
4. Изучение явления электромагнитной индукции.
5. Наблюдение сплошного и линейчатых спектров испускания.
Предметными результатами изучения темы являются:
-
понимание и способность описывать и объяснять физические явления/процессы:электромагнитная индукция, самоиндукция, преломление света, дисперсия света, поглощение и испускание света атомами, возникновение линейчатых спектров излучения и поглощения; -
умение давать определения / описание физических понятий:магнитное поле, линии магнитной индукции; однородное и неоднородное магнитное поле, магнитный поток, переменный электрический ток, электромагнитное поле, электромагнитные волны, электромагнитные колебания, радиосвязь, видимый свет; физических величин:магнитная индукция, индуктивность, период, частота и амплитуда электромагнитных колебаний, показатели преломления света; -
знание формулировок, понимание смысла и умение применять закон преломления света и правило Ленца, квантовых постулатов Бора; -
знание назначения, устройства и принципа действия технических устройств:электромеханический индукционный генератор переменного тока, трансформатор, колебательный контур; детектор, спектроскоп, спектрограф; -
понимание сути метода спектрального анализа и его возможностей.
Строение атома и атомного ядра
Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения.
Опыты Резерфорда. Ядерная модель атома.
Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел
Экспериментальные методы исследования частиц.
Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правила смещения для альфа- и бета-распада
Энергия связи частиц в ядре. Деление ядер урана.
Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций.
Дозиметрия. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы.
Термоядерная реакция. Источники энергии Солнца и звезд.
Фронтальные лабораторные работы
6. Измерение естественного радиационного фона дозиметром.
7. Изучение деления ядра атома урана по фотографии треков.
8. Изучение треков заряженных частиц по готовым фотографиям.
Предметными результатами изучения темы являются:
понимание и способность описывать и объяснять физические явления:радиоактивное излучение, радиоактивность,
знание и способность давать определения/описания физических понятий: радиоактивность, альфа-, бета- и гамма-частицы; физических моделей:модели строения атомов, предложенные Д. Д. Томсоном и Э. Резерфордом; физических величин: период полураспада, дефект масс, энергия связи,
понимание смысла основных физических законов:закон сохранения массового числа и заряд, закон радиоактивного распада.
использование полученных знаний, умений и навыков в повседневной жизни (быт, экология, охрана здоровья, техника безопасности и др.);
назначения и понимание сути экспериментальных методов исследования частиц;
знание и описание устройства и умение объяснить принцип действия технических устройств и установок:счётчика Гейгера, камеры Вильсона, пузырьковой камеры, ядерного реактора.
Строение и эволюция Вселенной
Состав, строение и происхождение Солнечной системы.
Планеты и малые тела Солнечной системы.
Строение, излучение и эволюция Солнца и звёзд.
Строение и эволюция Вселенной.
Частными предметными результатами изучения темы являются:
-
представление о составе, строении, происхождении и возрасте Солнечной системы; -
умение применять физические законы для объяснения движения планет Солнечной системы, -
знать, что существенными параметрами, отличающими звёзды от планет, являются их массы и источники энергии (термоядерные реакции в недрах звёзд и радиоактивные в недрах планет); -
сравнивать физические и орбитальные параметры планет земной группы с соответствующими параметрами планет-гигантов и находить в них общее и различное; -
объяснять суть эффекта Х. Доплера; формулировать и объяснять суть закона Э. Хаббла, знать, что этот закон явился экспериментальным подтверждением модели нестационарной Вселенной, открытой А. А. Фридманом.
Общими предметными результатами