Файл: Физиология мышечной деятельности.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.12.2023

Просмотров: 114

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Высокая скорость проведения возбуждения по волокнам Пуркинье обусловлена наличием быстрых натриевых каналов. Благодаря проводящей системе передача возбуждения к отдаленным участкам миокарда значительно ускоряется и все кардиомиоциты желудочков начинают сокращаться почти одновременно. Так, при повреждении пучка Гиса мощность желудочков может снижаться на 30-50% вследствие более медленного проведения возбуждения по миокраду.

Рефрактерность. Как и в других возбудимых тканях, в миокарде различают периоды рефрактерности и экзальтации (изменение возбудимости). Здесь они играют существенную роль в обеспечении нормальной функции сердца, создавая возможность лишь одиночных мышечных сокращений.

Различают периоды абсолютной и относительной рефрактерности. Период абсолютной рефрактерности характеризуется отсутствием ответа на действие раздражителя любой силы. В период относительной рефрактерности поступление раздражителя с силой, большей, чем обычно, может вызвать возникновение внеочередного ПД.

5 Двигательная единица


Каждое двигательное нервное волокно является отростком нервной клетки – мотонейрона, расположенного в переднем роге спинного мозга или в двигательном ядре черепного нерва. В мышце двигательное волокно ветвится и иннервирует не одно, а целую группу мышечных волокон. Мотонейрон вместе с группой иннервируемых мышечных волокон называется двигательнойединицей.

Среднее количество мышечных волокон, входящих в состав двигательной единицы, в разных мышцах варьирует в широких пределах. Так, у человека в некоторых мышцах глазного яблока двигательные единицы содержат в среднем менее 10 мышечных волокон, в отдельных мышцах пальцев руки – 10-25. В отличие от этого в большинстве мышц туловища и конечностей на одно двигательное волокно приходится в среднем сотни мышечных волокон, а в камбаловидной мышце – 2000.

По типу выполняемых функций ДЕ могут быть подразделены на быстрые и медленные. Эти ДЕ отличаются как по особенностям мотонейрона, так и мышечных волокон. Быстрые и медленные ДЕ отличаются по возбудимости, скорости проведения импульсов по аксону, частоте импульсации и устойчивости к утомлению при выполнении работы.

В медленной ДЕ размеры мотонейронов меньше, чем в быстрых ДЕ. Чем меньше мотонейрон, тем выше возбудимость. Скорость проведения возбуждения выше в быстрых ДЕ, т.к. диаметр нервного волокна в быстрых ДЕ больше, чем в медленных. В быстрых ДЕ частота импульсации, следовательно, будет выше, чем в медленных.


В мышечных волокнах быстрых ДЕ выше плотность актомиозиновых филаментов (быстрее образуются актомиозиновые мостики, выше скорость сокращения), более выражен саркоплазматический ретикулум (депо кальция), повышена активность ферментов гликолиза (анаэробное окисление, быстрое восстановление АТФ). Однако, при гликолизе образуются недоокисленные субстраты (молочная кислота), которые закисляют работающую мышцу и снижают ее работоспособность.

В мышечных волокнах медленных ДЕ выше активность ферментов аэробного окисления (экономически более выгодный путь). Так, если из одного моля глюкозы за счет гликолиза образуется лишь 2-3 АТФ, то аэробное окисление способствует образованию 36-38 молей АТФ. Медленные мышечные волокна имеют плотную сеть кровеносных капилляров, поэтому лучше снабжаются кислородом, внутри этих волокон содержится большое количество миоглобина (депо кислорода). Таким образом, медленные ДЕ отличаются легкой возбудимостью, меньшей силой и скоростью сокращения при малой утомляемости и высокой выносливости.

У различных людей имеются врожденные отличия процентного соотношения быстрых и медленных волокон в скелетных мышцах. Например, в наружной мышце бедра диапазон колебания медленных волокон от 13 до 96%. Преобладание медленных волокон обеспечивает «стайерские», а малый их процент – «спринтерские» возможности спортсмена.

Скелетно-мышечный аппарат является исполнительной системой организма, а его рецепторы – проприорецепторы – играют особо важную роль среди других чувствительных образований.

Проприорецепторами называют механорецепторы, посылающие в ЦНС информацию о положении, деформации и смещениях различных частей тела. Их функционирование обеспечивает координацию всех подвижных органов и тканей человека в состоянии покоя и во время любых двигательных актов.

В составе скелетной мышцы конечностей можно выделить две группы волокон: экстрафузальные и интрафузальные. Первые образуют основную массу мышцы и выполняют всю работу, необходимую для движения и поддержания позы, вторые – это видоизмененные мышечные волокна, которые входят в состав веретена; их функция сводится к формированию восходящей афферентной импульсации.

Интрафузальные мышечные веретена распложены параллельно экстрафузальным волокнам. Интрафузальные мышечные веретена контролируют длину мышцы.

В мышечном веретене различают центральную утолщенную часть с ядрами, расположенными в центре и полярные тонкие участки с ядрами, расположенными цепочкой. От центральной части и проксимальных отделов полярных участков отходят афферентные нервы (α-мотонейрон), к дистальным отделам полярных участков подходят эфферентные аксоны

γ-мотонейронов. Активация γ-эфферентов приводит к повышению чувствительности веретен.

Веретена можно рассматривать как источник информации о длине мышцы и ее изменениях. Чувствительные нервные окончания типа мышечного веретена информируют двигательные центры о том, каковы амплитуда и скорость растяжения мышцы, сухожильный орган Гольджи сообщает, какое напряжение развивает в данный момент мышца (контролирует силу сокращения), а механорецепторы Руффини помогают определить положение сустава. Благодаря раздражению проприорецепторов сухожилия четырехглавой мышцы бедра при ударе молоточком ниже коленной чашечки осуществляется коленный рефлекс. Рецепторы передают возникшее возбуждение спинальным мотонейронам, и последние заставляют мышцу бедра сократиться, из-за чего голень подпрыгивает. Аналогично осуществляется двигательный защитный рефлекс при болевом раздражении. С помощью проприорецептивных сигналов с мышц-антагонистов человека регулирует удержание определенной позы.

6 Формы и типы мышечного сокращения


Укорачиваясь, сокращающаяся мышца тянет оба конца к центру. В естественных условиях оба конца мышцы прикрепляются с помощью сухожилий к костям и при сокращении притягивают их друг к другу. Если один конец мышцы (сустав) закреплен, то к нему подтягивается другой.

Когда на этом конце мышцы прикреплен груз, который мышца поднять не в состоянии, она лишь напрягается без изменения длины. Встречаются и такие состояния, когда мышца постепенно увеличивается в длину (груз тяжелее, чем подъемная сила мышцы, или необходимо медленно опустить груз).

В экспериментальных условиях можно выделить одну мышцу, одно волокно и даже одну актомиозиновую нить с иннервирующим нервом или без нерва. Если закрепить один конец в штатив неподвижно, к другому подвесить груз или регистрирующее устройство, то можно записать сокращение мышцы – миограмму.

В силу этого различают следующие типы мышечных сокращений:

    • изотоническое – сокращение мышц с укорочением при сохранении постоянного напряжения;

    • изометрическое – длина мышцы не изменяется (напряжение);

    • эксцентрическое – когда мышца удлиняется.

Большинство естественных сокращений анизотонического типа, когда мышца укорачивается при повышении напряжения.


Кривая одиночного сокращения имеет вид, представленный на рисунке. На ней можно различить фазы сокращения и расслабления. Вторая фаза более продолжительная. Время одного сокращения даже одиночного волокна значительно больше времени существования ПД.

Амплитуда одиночного сокращения изолированного мышечного волокна не зависит от силы раздражения, а подчиняется закону «все или ничего». В отличие от этого, на целой мышце можно получить «лестницу» (лестница Боудича): чем больше силы (до определенной величины) раздражения, тем сильнее сокращение. Дальнейшее увеличение силы раздражения не влияет на амплитуду сокращения мышцы. Указанная закономерность прослеживается как при раздражении через нерв, так и при раздражении самой мышцы. Обусловлено это тем, что практически все мышцы (и нервы) смешанные, то есть состоят из смеси двигательных единиц (ДЕ), имеющих различную возбудимость.