ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.12.2023
Просмотров: 197
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
1. Классификация возможных архитектур информационных систем
7. Функциональная логика приложений
8. Различная физическая реализация логической модели
3. HTTP-аутификация средствами PHP.
4. Создание GIF-файлов с помощью PHP.
5. Поддержка file upload. Поддержка HTTP cookie. Поддержка баз данных.
Но с другой стороны, в большинстве персональных СУБД эти условия не выполняются даже с помощью грубых приемов. В лучшем случае удается частично восполнить недостатки на уровне прикладных программ.
В-третьих, интерфейс развитых серверов баз данных основан на использовании высокоуровневого языка баз данных SQL, что позволяет использовать сетевой трафик между клиентом и сервером баз данных только в полезных целях (от клиента к серверу в основном пересылаются операторы языка SQL, от сервера к клиенту - результаты выполнения операторов). В файл-серверной организации клиент работает с удаленными файлами, что вызывает существенную перегрузку трафика (поскольку СУБД-ФС работает на стороне клиента, то для выборки полезных данных в общем случае необходимо просмотреть на стороне клиента весь соответствующий файл целиком).
В целом, в файл-серверной архитектуре мы имеем "толстого" клиента и очень "тонкий" сервер в том смысле, что почти вся работа выполняется на стороне клиента, а от сервера требуется только достаточная емкость дисковой памяти (Рисунок 2).
Рисунок 2 – "Толстый" клиент и "тонкий" сервер в файл-серверной архитектуре
Краткие выводы. Простое, работающее с небольшими объемами информации и рассчитанное на применение в однопользовательском режиме, файл-серверное приложение можно спроектировать, разработать и отладить очень быстро. Очень часто для небольшой компании для ведения, например, кадрового учета достаточно иметь изолированную систему, работающую на отдельно стоящем PC. Конечно, и в этом случае требуется большая аккуратность конечных пользователей (или администраторов, наличие которых в этом случае сомнительно) для надежного хранения и поддержания целостного состояния данных. Однако, в уже ненамного более сложных случаях (например, при организации информационной системы поддержки проекта, выполняемого группой) файл-серверные архитектуры становятся недостаточными.
Клиент-серверные приложения
Под клиент-серверным приложением мы будем понимать информационную систему, основанную на использовании серверов баз данных. Общее представление информационной системы в архитектуре "клиент-сервер" (Рисунок 3).
-
На стороне клиента выполняется код приложения, в который обязательно входят компоненты, поддерживающие интерфейс с конечным пользователем, производящие отчеты, выполняющие другие специфичные для приложения функции (пока нас не будет занимать, как строится код приложения). -
Клиентская часть приложения взаимодействует с клиентской частью программного обеспечения управления базами данных, которая, фактически, является индивидуальным представителем СУБД для приложения.
(Здесь опять проявляются недостатки в терминологии. Обычно, когда компания объявляет о выпуске очередного сервера баз данных, то неявно понимается, что имеется и клиентская составляющая этого продукта. Сочетание "клиентская часть сервера баз данных" кажется несколько странным, но нам придется пользоваться именно этим термином.)
Рисунок 3 – Общее представление информационной системы в архитектуре "клиент-сервер"
Заметим, что интерфейс между клиентской частью приложения и клиентской частью сервера баз данных, как правило, основан на использовании языка SQL. Поэтому такие функции, как, например, предварительная обработка форм, предназначенных для запросов к базе данных, или формирование результирующих отчетов выполняются в коде приложения.
Наконец, клиентская часть сервера баз данных, используя средства сетевого доступа, обращается к серверу баз данных, передавая ему текст оператора языка SQL.
Здесь необходимо сделать еще два замечания.
-
Обычно компании, производящие развитые серверы баз данных, стремятся к тому, чтобы обеспечить возможность использования своих продуктов не только в стандартных на сегодняшний день TCP/IP-ориентированных сетях, но в сетях, основанных на других протоколах (например, SNA или IPX/SPX). Поэтому при организации сетевых взаимодействий между клиентской и серверной частями СУБД часто используются не стандартные средства высокого уровня (например, механизмы программных гнезд или вызовов удаленных процедур), а собственные функционально подобные средства, менее зависящие от особенностей сетевых транспортных протоколов. -
Когда мы говорим об интерфейсе на основе языка SQL, нужно отдавать себе отчет в том, что несмотря на титанические усилия по стандартизации этого языка, нет такой реализации, в которой стандартные средства языка не были бы расширены. Необдуманное использование расширений языка приводит к полной зависимости приложения от конкретного производителя сервера баз данных.
Мы остановимся на этих вопросах более подробно в четвертой части курса.
Посмотрим теперь, что же происходит на стороне сервера баз данных. В продуктах практически всех компаний сервер получает от клиента текст оператора на языке SQL.
-
Сервер производит компиляцию полученного оператора. Не будем здесь останавливаться на том, какой целевой язык используется конкретным компилятором; в разных реализациях применяются различные подходы (примеры см. в части 4). Главное, что в любом случае на основе информации, содержащейся в таблицах-каталогах базы данных производится преобразование непроцедурного представления оператора в некоторую процедуру его выполнения. -
Далее (если компиляция завершилась успешно) происходит выполнение оператора. Мы снова не будем обсуждать технические детали, поскольку они различаются в реализациях. Рассмотрим возможные действия операторов SQL.-
Оператор может относиться к классу операторов определения (или создания) объектов базы данных (точнее и правильнее было бы говорить про элементы схемы базы данных или про объекты метабазы данных). В частности, могут определяться домены, таблицы, ограничения целостности, триггеры, привилегии пользователей, хранимые процедуры. В любом случае, при выполнении оператора создания элемента схемы базы данных соответствующая информация помещается в таблицы-каталоги базы данных (в таблицы метабазы данных). Ограничения целостности обычно сохраняются в метабазе данных прямо в текстовом представлении. Для действий, определенных в триггерах, и хранимых процедур вырабатывается и сохраняется в таблицах-каталогах процедурный выполняемый код. Заметим, что ограничения целостности, триггеры и хранимые процедуры являются, в некотором смысле, представителями приложения в поддерживаемой сервером базе данных; они составляют основу серверной части приложения (см. ниже). -
При выполнении операторов выборки данных на основе содержимого затрагиваемых запросом таблиц и, возможно, с использованием поддерживаемых в базе данных индексов формируется результирующий набор данных (мы намеренно не используем здесь термин "результирующая таблица", поскольку в зависимости от конкретного вида оператора результат может быть упорядоченным, а таблицы, т.е. отношения неупорядочены по определению). Серверная часть СУБД пересылает результат клиентской части, и окончательная обработка производится уже в клиентской части приложения. -
При выполнении операторов модификации содержимого базы данных (INSERT, UPDATE, DELETE) проверяется, что не будут нарушены определенные к этому моменту ограничения целостности (те, которые относятся к классу немедленно проверяемых), после чего выполняется соответствующее действие (сопровождаемое модификацией всех соответствующих индексов и журнализацией изменений). Далее сервер проверяет, не затрагивает ли данное изменение условие срабатывания какого-либо триггера, и если такой триггер обнаруживается, выполняет процедуру его действия. Эта процедура может включать дополнительные операторы модификации базы данных, которые могут вызвать срабатывание других триггеров и т.д. Можно считать, что те действия, которые выполняются на сервере баз данных при проверке удовлетворенности ограничений целостности и при срабатывании триггеров, представляют собой действия серверной части приложения. -
При выполнении операторов модификации схемы базы данных (добавления или удаления столбцов существующих таблиц, изменения типа данных существующего столбца существующей таблицы и т.д.) также могут срабатывать триггеры, т.е., другими словами, может выполняться серверная часть приложения. -
Аналогично, триггеры могут срабатывать при уничтожении объектов схемы базы данных (доменов, таблиц, ограничений целостности и т.д.). -
Особый класс операторов языка SQL составляют операторы вызова ранее определенных и сохраненных в базе данных хранимых процедур. Если хранимая процедура определяется с помощью достаточно развитого языка, включающего и непроцедурные операторы SQL, и чисто процедурные конструкции (например, языка PL/SQL компании Oracle), то в такую процедуру можно поместить серьезную часть приложения, которое при выполнении оператора вызова процедуры будет выполняться на стороне сервера, а не на стороне клиента. -
При выполнении оператора завершения транзакции сервер должен проверить соблюдение всех, так называемых, отложенных ограничений целостности (к таким ограничениям относятся ограничения, накладываемые на содержимое таблицы базы целиком или на несколько таблиц одновременно; например, суммарная зарплата сотрудников отдела 999 не должна превышать 150 млн. руб.). Снова к проверке отложенных ограничений целостности можно относиться как к выполнению серверной части приложения.
-
Как видно, в клиент-серверной организации клиенты могут являться достаточно "тонкими", а сервер должен быть "толстым" настолько, чтобы быть в состоянии удовлетворить потребности всех клиентов (Рисунок 4).
Рисунок 4 – "Тонкий" клиент и "толстый" сервер в клиент-серверной архитектуре
С другой стороны, разработчики и пользователи информационных систем, основанных на архитектуре "клиент-сервер", часто бывают неудовлетворены постоянно существующими сетевыми накладными расходами, которые следуют из потребности обращаться от клиента к серверу с каждым очередным запросом. На практике распространена ситуация, когда для эффективной работы отдельной клиентской составляющей информационной системы в действительности требуется только небольшая часть общей базы данных. Это приводит к идее поддержки локального кэша общей базы данных на стороне каждого клиента.
Фактически, концепция локального кэширования базы данных является частным случаем концепции реплицированных (или, как иногда их называют в русскоязычной литературе, тиражированных) баз данных. Как и в общем случае, для поддержки локального кэша базы данных программное обеспечение рабочих станций должно содержать компонент управления базами данных - упрощенный вариант сервера баз данных, который, например, может не обеспечивать многопользовательский режим доступа. Отдельной проблемой является обеспечение согласованности (когерентности) кэшей и общей базы данных. Здесь возможны различные решения - от автоматической поддержки согласованности за счет средств базового программного обеспечения управления базами данных до полного перекладывания этой задачи на прикладной уровень. В любом случае, клиенты становятся более толстыми при том, что сервер тоньше не делается (Рисунок 5).
Рисунок 5 – "Потолстевший" клиент и "толстый" сервер в клиент-серверной архитектуре с поддержкой локального кэша на стороне клиентов
Сформулируем некоторые предварительные выводы. Архитектура "клиент-сервер" на первый взгляд кажется гораздо более дорогой, чем архитектура "файл-сервер". Требуется более мощная аппаратура (по крайней мере, для сервера) и существенно более развитые средства управления базами данных. Однако, это верно лишь частично. Громадным преимуществом клиент-серверной архитектуры является ее масштабируемость и вообще способность к развитию.
При проектировании информационной системы, основанной на этой архитектуре, большее внимание следует обращать на грамотность общих решений. Технические средства пилотной версии могут быть минимальными (например, в качестве аппаратной основы сервера баз данных может использоваться одна из рабочих станций). После создания пилотной версии нужно провести дополнительную исследовательскую работу, чтобы выяснить узкие места системы. Только после этого необходимо принимать решение о выборе аппаратуры сервера, которая будет использоваться на практике.
Увеличение масштабов информационной системы не порождает принципиальных проблем. Обычным решением является замена аппаратуры сервера (и, может быть, аппаратуры рабочих станций, если требуется переход к локальному кэшированию баз данных). В любом случае практически не затрагивается прикладная часть информационной системы. В идеале, которого, конечно же не бывает, информационная система продолжает нормально функционировать после смены аппаратуры.
2. Архитектуры корпоративных информационных систем
Возникновение и внедрение в широкую практику высокоуровневых служб Всемирной Сети Сетей Internet (e-mail, ftp, telnet, Gopher, WWW и т.д.) естественным образом повлияли на технологию создания корпоративных информационных систем, породив направление, известное теперь под названием Intranet. По сути дела, информационная Intranet-система - это корпоративная система, в которой используются методы и средства Internet. Такая система может быть локальной, изолированной от остального мира Internet, или опираться на виртуальную корпоративную подсеть Internet. В последнем случае особенно важны средства защиты информации от несанкционированного доступа. Возможности и проблемы безопасных информационных Intranet-систем мы рассмотрим в пятой части курса.
Хотя в общем случае в Intranet-системе могут использоваться все возможные службы Internet, наибольшее внимание привлекает гипермедийная служба WWW (World Wide Web - Всемирная Паутина). Видимо, для этого имеются две основные причины. Во-первых, с использованием языка гипермедийной разметки документов HTML можно сравнительно просто разработать удобную для использования информационную структуру, которая в дальнейшем будет обслуживаться одним из готовых Web-серверов. Во-вторых, наличие нескольких готовых к использованию клиентских частей - браузеров, или "обходчиков" избавляет от необходимости создавать собственные интерфейсы с пользователями, предоставляя им удобные и развитые механизмы доступа к информации. В ряде случаев такая организация корпоративной информационной системы (Рисунок 6) оказывается достаточной для удовлетворения потребностей компании.
Рисунок 6 – Простая организация Intranet-системы с использованием средств WWW
Однако, при всех своих преимуществах (простота организации, удобство использования, стандартность интерфейсов и т.д.) эта схема обладает сильными ограничениями. Прежде всего, в информационной системе отсутствует прикладная обработка данных. Все, что может пользователь, это только просмотреть информацию, поддерживаемую Web-сервером. Далее, гипертекстовые структуры трудно модифицируются. Для того, чтобы изменить наполнение Web-сервера, необходимо приостановить работу системы, внести изменения в HTML-описания и только затем продолжить нормальное функционирование. Наконец, далеко не всегда достаточен поиск информации в стиле просмотра гипертекста. Базы данных и соответствующие средства выборки данных по-прежнему часто необходимы.
На самом деле, все перечисленные трудности могут быть разрешены с использованием более развитых механизмов Web-технологии. Эти механизмы непрерывно совершенствуются, что одновременно и хорошо, и плохо. Хорошо, потому что появляются новые возможности. Плохо, потому что отсутствует стандартизация.
Что касается логики приложения, то при применении Web-технологии существует возможность ее реализации на стороне Web-сервера. Для этого могут использоваться два подхода - CGI (Common Gateway Interface) и API (Application Programming Interface). Оба подхода основываются на наличии в языке HTML специальных конструкций, информирующих клиента-браузера, что ему следует послать Web-серверу специальное сообщение, при получении которого сервер должен вызвать соответствующую внешнюю процедуру, получить ее результаты и вернуть их клиенту в стандартном формате HTTP (Рисунок 7).
Рисунок 7 – Вызов внешней процедуры Web-сервера
Более подробно различия между подходами CGI и API мы рассмотрим в пятой части курса, а пока лишь заметим, что подход CGI является более надежным (внешняя программа выполняется в отдельном адресном пространстве), но менее эффективным, чем подход API (в этом случае внешние процедуры компонуются совместно со стандартной частью Web-сервера).
Аналогичная техника широко используется для обеспечения унифицированного доступа к базам данных в Intranet-системах. Язык HTML позволяет вставлять в гипертекстовые документы формы. Когда браузер натыкается на форму, он предлагает пользователю заполнить ее, а затем посылает серверу сообщение, содержащее введенные параметры. Как правило, к форме приписывается некоторая внешняя процедура сервера. При получении сообщения от клиента сервер вызывает эту внешнюю процедуру с передачей параметров пользователя. Понятно, что такая внешняя процедура может, в частности, играть роль шлюза между Web-сервером и сервером баз данных. В этом случае параметры должны специфицировать запрос пользователя к базе данных. В результате получается конфигурация информационной системы (Рисунок 8).