Файл: Методическое пособие По рабочей профессии Аппаратчик химводоочистки.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.12.2023
Просмотров: 2036
Скачиваний: 103
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
Применить возврат в сооружении биологической очистки концентрата пены, содержащего «биологически жесткие» ПАВ, нельзя, так как эти соединения практически не окисляются, а увеличение концентрации более 10 мг/л оказывает отрицательное влияние на процессы биологической очистки сточных вод.
Удаление из воды токсичных химических веществ.
Токсичные химические вещества удаляются путем адсорбции на активированных углях из сточных вод цветной металлургии извлекают цинк, медь, свинец, никель и другие металлы. Сильно ядовитый фенол удаляют с помощью экстракции минеральными маслами или бензолом.
В последние годы начали применяться более экономичные массообменные процессы — обратный осмос и электродиализ.
Химические методы заключаются в обработке сточных вод химическими реагентами. В результате реакций нейтрализации, окисления, восстановления ядовитые вещества переходят в нетоксичные продукты или же выпадают в осадок, который отделяется механическими методами.
Удаление из воды железа и марганца.
Вода из подземных водозаборов часто содержит недопустимую концентрацию железа и марганца. В таких случаях ее необходимо подвергать очистке. В данной статье рассматривается процесс очистки воды от железа и марганца: его принципы, технологические схемы, материалы и оборудование для очистки.
Об избытке железа в воде могут свидетельствовать желто-коричневые потеки на сантехнике, желтоватые пятна на вещах, выстирываемых в стиральной машине, металлический привкус воды. Но это критерии, определяемые, так сказать, на глаз. Существуют и Государственные санитарные нормы.
Железо и марганец могут попадать в воду как естественным путем – из горных пород, так и техногенным: железо – из отходов металлургических предприятий, марганец – из стоков горнодобывающих предприятий, а также из удобрений, применяемых в сельском хозяйстве. Железо в воде встречается в двух формах: двухвалентной – Fe(II) и трехвалентной - Fe(III). В поверхностных водах преобладают нерастворимые в воде соединения железа Fe(III). Они вступают в контакт с кислородом, содержащемся в воздухе, и выпадают в виде осадка. Поэтому концентрация железа в поверхностных водах невелика. В глубинных водах, без контакта с кислородом, железо содержится преимущественно в форме Fe(II). Его концентрация в воде может быть весьма различной – от нормы до 10 и более мг/куб.дм. Марганец содержится в глубинных водных горизонтах в двухвалентной форме Mn(II). Очень часто он присутствует в воде вместе с железом, но его концентрация меньше, чем железа – не более 10 мг/куб.дм.
Принцип очистки воды от железа заключается в окислении растворимой в воде двухвалентной формы железа Fe(II) до нерастворимой трехвалентной Fe(III), а она, в свою очередь, уже удаляется из воды при помощи фильтрации. Очистка воды от марганца производится по тому же принципу. Разница заключается лишь в том, что растворимая двухвалентная форма марганца Mn(II) окисляется до нерастворимой четырехвалентной Mn(IV).
Основными элементами системы очистки воды от железа и марганца являются аэратор, предназначенный для насыщения воды кислородом и фильтрующая колонна. Аэратор монтируется перед фильтрующей колонной. Между ним и фильтрующей колонной желательно смонтировать контактную емкость, чтобы вода лучше насытилась кислородом. В некоторых случаях можно обойтись без аэратора, а закачивать воздух компрессором сразу в фильтр. Некоторые виды фильтрующих материалов являются сильными окислителями. Если применяются такие материалы, то аэратор, как правило, также не требуется. Железо окисляется и оседает на поверхности частиц фильтрующего материала. Фильтрующие материалы подбирают в зависимости от состава воды. Прежде всего, необходимо определиться с качеством воды, которое необходимо получить. Далее учитываются такие параметры, как концентрация соединений железа и марганца в воде, их форма, кислотность воды (Ph), содержание в воде кислорода или углекислого газа, а также присутствие сероводорода или аммиака. Также играют роль параметры водопровода (напор и производительность).
Если в воде присутствует только железо в количестве нескольких мг/дм3, в основном в виде бикарбонатных солей, содержание марганца и цвет в норме, а реакция рН превышает 7, можно использовать самый простой способ удаления соединений железа - аэрацию и фильтрацию через песчаный фильтрующий слой. Если, кроме железа, присутствует и марганец, используется каталитический фильтрующий материал. В системе водоснабжения, где давление воды в трубопроводах обеспечивается с помощью насосной станции, можно использовать фильтр, работающий в комплекте с компрессором. В этом случае устранение соединений железа обеспечивают гравийно-песчаные фильтрующие материалы. Байпас (обход) встроен в управляющую головку (управляющий клапан). Когда вода содержит железо и марганец в большей концентрации, а в ней присутствует сероводород (или аммиак) или показатель кислотности воды рН ниже 7,5, необходимо использовать каталитические фильтрующие материалы, регенерируемые КМпО4. В этих случаях к фильтрующей колонне при помощи гибкого шланга подсоединяют емкость с раствором для регенерации фильтрующего материала.
Методы обезжелезивания воды.
Необходимая степень обезжелезивания воды определятся конечными целями, для которых эта вода будет использоваться. И хотя на сегодняшний день не существует единого универсального метода комплексного удаления всех существующих форм железа из воды, используя ту или иную схему очистки, можно добиться желаемого результата в каждом конкретном случае.
Окислительное обезжелезивание.
Традиционные методы обезжелезивания воды основываются на окислении двухвалентного железа кислородом воздуха (аэрация) и сильными окислителями (хлор, перманганат калия, перекись водорода, озон) до трехвалентного состояния, с образованием нерастворимого гидроксида железа (III), который впоследствии удаляется отстаиванием, отстаиванием с добавлением коагулянтов и флоккулянтов (А-Т 9.303) и (или) фильтрацией.
Аэрация.
Окисление железа аэрацией может проводиться: фонтанированием (так называемые брызгальные установки), душированием, с помощью инжектора, эжектора или компрессора, введением воздуха в трубу под напором, барботацией.
Во многих случаях вода, прошедшая обезжелезивание аэрацией с последующим остаиванием и фильтрацией, уже оказывается пригодной к употреблению в качестве питьевой. По такой упрощенной схеме обезжелезивание эффективно, когда исходная концентрация железа не превышает 10 мг/мл (при содержании двухвалентного железа не менее 70% от общего), концентрация H2S не более 2,5 мг/л. Окислительно-восстановительный потенциал (редокс-потенциал) воды после аэрации не должен быть ниже 100 мВ, а индекс стабильности (индекс Ланжелье) не менее 0,05.
Выбор способа упрощенной аэрации зависит от параметров исходной воды. Так, если концентрация сероводорода выше 0,5 мг/л, а свободной углекислоты – более 40 мг/л, введения воздуха в трубопровод под напором не требуется – достаточно предусмотреть открытую емкость со свободным изливом в нее воды. Аналогичного эффекта можно достичь с помощью фонтанирования или душирования.
Тема 1.1.7 Реагентное хозяйство.
Состав и компановка реагентного хозяйства. Схемы и принцип работы установок для растворения сухих реагентов.
Склады реагентов.
Известны две схемы организации реагентного хозяйства: первая - предусматривает получение с заводов-поставщиков готовой продукции, которую затем с помощью специальных дозаторов вводят в обрабатываемую воду; вторая - основана на получении с заводов полуфабрикатов, нуждающихся в дальнейшей обработке и доведении до продукта, удобного для дозирования.
У потребляемые при обработке воды реагенты вводятся в виде порошков или гранул (сухое дозирование) либо в виде водных растворов или суспензий (мокрое дозирование). Оба способа дозирования требуют организации на водоочистном комплексе реагентного хозяйства. В первом случае на водоочистном заводе должны быть предусмотрены склад готовой продукции и аппараты-дозаторы. Во втором - учитывая, что реагенты поступают в виде полуфабрикатов, необходимо предусмотреть помимо склада аппаратуру для приготовления растворов (или суспензий) реагентов и дозирования в обрабатываемую воду. При этом возможно складирование реагентов в сухом виде навалом или в специальной таре либо в виде высококонцентрированных растворов в специальных емкостях.
Рис. 54. Бак для хранения коагулянта в жидком виде.
Во избежание потерь коагулянта в результате слеживания, а также при выполнении трудоемких погрузочно-разгрузочных работ при доставке коагулянта и загрузке растворных баков в настоящее время широко распространено хранение коагулянта в жидком виде. С этой целью на водоочистном заводе предусматривают резервуары большего объема, в которых заготовляют расчетный запас коагулянта в виде раствора высокой концентрации (до 30%), загружая их коагулянтом, доставляемым с завода-изготовителя в кусках. В процессе эксплуатации концентрированный раствор коагулянта передают в расходные баки, где доводят раствор до рабочей концентрации 10-12%, а затем дозируют в обрабатываемую воду.
Для хранения реагентов в сухом виде предусматривают закрытые помещения на первом этаже вблизи от растворных баков. При хранении навалом сульфата алюминия и негашеной извести высоту слоя принимают соответственно 1,5 и 2 м, а при наличии соответствующей механизации допускается увеличение высоты слоя до 2,5 и 3,5 м. Высоту слоя поваренной соли следует принимать до 2 м.
При поставке реагентов в таре рекомендуется следующая высота их укладки, м; для хлорного железа в барабанах и железного купороса в бумажных мешках - соответственно 2,5 и 3,5; для кальцинированной соды в бумажных мешках - 2-3,5; в контейнерах - 2-3; для активного угля в бумажных мешках, геля ПАА в бочках, кремнефтористого натрия в бочках, силиката натрия в бочках, технического перманганата калия в металлических бочках и баках - 2,5.
Склад для хранения кислот следует изолировать от остальных складских помещений. Он должен иметь надежную приточно вытяжную систему вентиляции. При его проектировании необходимо учитывать правила оборудования и содержания складов для хранения сильнодействующих и ядовитых веществ. Это также относится к складам хлора и аммиака, которые рекомендуется размещать в пониженных точках территории водоочистного комплекса.
Расходный склад хлора должен иметь объем для хранения не более 100 т, полностью изолированный отсек до 50 т. Склад рекомендуется размещать в полузаглубленных или наземных зданиях с двумя выходами с противоположных сторон. Хранят хлор в баллонах или контейнерах. Склад активного угля рекомендуется располагать в отдельном помещении, относящемся по пожарной опасности к категории В. При мокром хранении поваренной соли (при суточном расходе более 0,5 т) объем баков-хранилищ определяют из расчета 1,5 м3 на 1 т реагента. Склад для хранения запасов ионообменных материалов рассчитывают на объем загрузки двух катионитовых фильтров и по одной загрузке фильтров со слабо - и сильноосновным анионитом в случае их применения.
Очевидно, что от технологии улучшения качества воды зависят состав и насыщенность реагентного хозяйства. Так, помимо цехов коагулирования, хлорирования, известкования могут быть цехи углевания, фторирования и т.д.
При проектировании складов реагентов необходимо предусматривать механизацию их выгрузки из транспортных средств и загрузки в реагентные баки путем использования транспортеров и механических лопат.
Склад для хранения фильтрующих материалов и подбор оборудования проектируют из расчета 10%-ного ежегодного пополнения и обмена фильтрующей загрузки и хранения аварийного запаса на перегрузку одного фильтра при общем количестве до 20 и двух фильтров - при большем количестве. Для загрузки фильтров рекомендуется использовать водоструйные и песковые насосы. При отсутствии централизованной поставки гравия и фильтрующих материалов необходимо предусматривать на водоочистном комплексе специальный цех и оборудование для хранения, дробления, сортировки, отмывки и передачи указанных материалов на фильтры.