Файл: Методические приемы работы над задачей в начальной школе.doc

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 04.12.2023

Просмотров: 123

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Решить задачу - значит сделать (начертить) схему, записать одно выражение (одно действие с числами), вычислить, записать равенство и записать ответ. Как далеко это представление от истинного! [17]

По мнению С. Е. Царевой, ребенок, поступающий в школу, уже имеет некоторый опыт решения задач, в том числе и сюжетных математических (прикладных математических). У одних детей этот опыт богаче, у других - беднее. Он неосознан. Поэтому начинать обучение решению задач нужно с обогащения опыта решения задач на интуитивном уровне, с помощью предметных действий и здравого смысла. Важное место при этом должны занять операции наблюдения и сравнения, овладение детьми новыми способами обозначения результатов наблюдения и сравнения. С первых уроков нужно поощрять наблюдения детей, сравнение предметов и групп предметов по самым разнообразным свойствам, попытки детей классифицировать объекты окружающего мира. Существенный момент обучения в этот период - обсуждение учащимися способов обозначения наблюдаемых свойств, сходств и различий, а также установленных по какому-либо признаку отношений равенства, отношений больше и меньше, отношений целого и части. При обсуждении у ребенка возникает потребность в высказывании собственного мнения, в выражении согласия или несогласия с другими, в отстаивании некоторых утверждений. Взаимодействовать с другими можно только с помощью системы знаков. Если обсуждаются количественные отношения, то такими знаками могут быть как огромное количество слов русского языка (дом - домик - домище, "вот столечко!", "много", "мало" и т.д.), так и более универсальная система знаков - числа, действия с числами отношения между числами [20].

Главная цель первого периода обучения решению задач - формирование у учащихся основных познавательных действий, представлений о ключевых отношениях мира: отношениях целого и части, равенства и неравенства, формирование представлений о числах и действиях с ними как о системе знаков для сохранения и передачи информации. В процессе этой работы учителю полезно использовать термины задача, решить задачу в конкретных ситуациях с показом текстов конкретных задач. Также задачи на установление отношений равенства и неравенства, "на сложение и вычитание" на уровне интуиции, здравого смысла, предметных действий, переходя затем под руководством учителя к обозначению решения, когда это возможно, с помощью чисел и арифметических действий. Если ребенок сделал рисунок к задаче или задача уже представлена в виде рисунка, на котором; "виден" ответ на вопрос, то арифметические действия не являются средством получения ответа на вопрос задачи. Арифметические действия в этом случае являются лишь очень экономичной формой обозначения на письме выполненных предметных действий и счета. Научить детей пользоваться числами и действиями с ними как языком описания предметных действий - вот основная педагогическая задача первого, достаточно длительного периода обучения решению задач младших школьников.

1.3 Развивающее обучение решению математических задач

На современном этапе образования под развивающим обучением понимается обучение младших школьников общим приемам умственной деятельности, а на уроках математики - общим приемам по усвоению математических понятий (наблюдению, анализу, сравнению, заключению по аналогии, абстрагированию, синтезу, обобщению, дедуктивному, индуктивному умозаключению, классификации и др.) [8]

Мы рассмотрим некоторые методические вопросы обучения детей общим приемам решения любых математических задач.

В настоящее время далеко не каждого ребенка удается научить решать математические задачи. Основная причина заключается в том, что младшие школьники, прочитав задачу, не анализируют ее, а сразу приступают к решению, не обосновывая выбор арифметического знака действия.

Как научить ребенка сначала приступать к анализу задачи, составлению плана решения и только потом к ее решению.

Сначала следует научить ребенка читать задачу, понимать смысл прочитанного, пересказывать содержание, подмечать, какие события произошли в задаче: что было, что изменилось, что стало; объяснить, что обозначает каждое число в задаче, в чем суть тех или других математических выражений. В этом плане значительное учебное время отводится на рассмотрение так называемых "задач без вопросов". При таком методическом подходе дети приобретают первые навыки анализа условия задачи на основе событий, происходящих в задаче. Далее дети учатся правильно ставить вопрос к условию задачи (или составлять по вопросу условие задачи), выделять в задаче условие и ее вопрос. Нетрудно заметить, что на этом этапе начинается обучение детей составлению, сочинению, придумыванию задач, что может стать основным методическим приемом в практики учителя[8].

Путь к осознанному решению задач лежит главным образом через составление их детьми. Опытные учителя начальной школы делают это по картинкам; числовым данным; вопросу; дополнению задач не достающими данными или вопросом; решению или ответу; схеме, чертежу, краткой записи; плану решения; формулам; данным, взятым из справочников, таблиц и т. д.

Обучение анализу задачи на этом не заканчивается, а исследование ее продолжается при иллюстрации задачи рисунками, схемами, чертежами, при записывание краткого условия задачи.



В этом случае учебные действия согласно теории поэтапного формирования (А. Н. Леонтьева, П. Я. Гальперина) осуществляются при работе с материальными или материализованными объектами и проговариваются вслух (громкое проговаривание) с постепенным переходом к умственной форме действий (проговаривание про себя - в "уме") [2].

К сожалению, в начальной школе в настоящее время практически отсутствует на уроках математики алгебраический и геометрический способы решения задачи, а преобладает в основном арифметический, да и только в виде решения задач по действиям. Поэтому дети весьма ограничены в плане выбора способа решения - они решают задачи по действиям или составляют математическое выражение, хотя в программе по математике и есть решение простейших уравнений, но это проходит пропедевтической нитью через решение задач за все годы начального обучения математике. У многих младших школьников так и не сформировано представление о том, что задачи могут решаться алгебраическим или геометрическим способами. Отсюда напрашивается вывод о возвращении к методическим идеям шестидесятых годов, когда в учебниках математики довольно в полном объеме были реализованы вопросы алгебраической и геометрической пропедевтики. Наверное, уже в 1 классе целесообразно при решение задач на нахождение неизвестного слагаемого показать детям на уровне первичных преставлений, что данную задачу можно решить и с помощью уравнения, не вводя, естественно, это умение в ранг обязательных требований. [6]

Наиболее сложный учебный элемент в обучении младших школьников математике - обучение поиску решения задачи. Обратимся в этой связи к опыту учителей, к их методической копилке, где обнаружим множество интересных методических приемов, которые с успехом могут применяться на уроках математике, формируя у учащихся умение составлять вначале план решения задачи и только потом решать ее.

В 1 классе при решении простых задач на нахождение суммы и остатка поиск решения задачи сводится, главным образом, к выбору знака действия. Уже на этом начальном этапе важно, чтобы дети рассуждали о событиях, происходящих в задаче, проговаривая вслух, могли моделировать, иллюстрировать, выполнять рисунки, чертежи, схемы, используя их для обоснования выбора знака действия, доказывать, почему они выбирают именно этот знак действия, а не другой. Что позволит значительно уменьшить число ошибок на замену одного арифметического действия другим.


Многие опытные учителя (С. Е. Царева, Н. А. Гребенникова, К. А. Пестерева и др.) предлагают наряду с предметной (материальной или материализованной) наглядностью применять и схематические иллюстрации. Следует заметить, что ими установлено интересное наблюдение о недостаточности предметной иллюстрации задачи. По их мнению, она не отражает математической структуры задачи, результат при этом виден сразу и учащиеся не испытывают необходимости нахождения его с помощью арифметического действия. Предлагается : "… в 1 классе при решении задач использовать такой вид наглядности, как иллюстрация операций объединения непересекающихся множеств и удаления из множества его непустого подмножества. Эта иллюстрация помогает ученику абстрагироваться от конкретной ситуации, описанной в задаче, и в то же время представить эту жизненную ситуацию, т. е. конкретизировать ее, она отражает математическую структуру задачи, проста в использовании. Все это обеспечивает возможность ее использования при самостоятельном решении задач " [6].

В целом такие методики в данном случае просты и доступны для учащихся.

На подготовительном этапе учащимся раскрываются смысл арифметических действий сложения и вычитания. Дети учатся иллюстрировать данные в задаче с помощью "картинок с точками", при этом осуществляются операции объединения множеств и удаления подмножества из данного множества.

В результате такой работы дети усваивают, что операция объединения множества связана с действием сложения, а операция удаления подмножества из данного множества - с действием вычитания. При этом дети знакомятся с задачей, ее составными элементами - условием и вопросом; усваивают содержание всех операций, выполняемых в процессе решения простой задачи и порядком их следования; с операциями "ответ на вопрос задачи".

Когда дети усвоят содержание всех операций, их знакомят с инструкцией в виде "памятки", которая представлена как алгоритм умственных действий, что побуждает учеников выполнять все операции в определенной последовательности и усвоить образец рассуждения.

Рассуждаю так:

1. Мне известно…

2. Надо узнать…

3.Рисую и объясняю…

4. Подумаю, надо объединить или удалять…

5. Объясняю решение…

6. Решаю…

7. Отвечаю на вопрос задачи…

Пункты 4 - 7 соответствуют основным операциям, а позже в памятке появляется и пункт 8 "проверяю…" [17].

Обучение системе операций проходит в несколько стадий:

На первой стадии задания "памятки" и выполнение всех операций проговаривается вслух, затем задания "памятки" дети проговаривают шепотом, а выполнение операций - вслух. Наконец, задания "памятки" проговариваются про себя, а выполнение операций вслух.


На второй стадии происходит частичное свертывание выполнения системы операций. Выполняется это следующим образом: учащиеся про себя (или шепотом) проговаривают, что известно в задаче, что надо узнать, рисуют "картинку с точками" и шепотом объясняют ее выполнение. Вслух же они проговаривают выполнение основных операций, такая методическая работа носит название краткое объяснение решения задачи.

При обучение правильному выбору арифметического действия используется такой методический прием: после такого как дети выделили условие, вопрос задачи, им предлагалось закрыть глаза, представить "картинку с точками", показать жестом, что нужно сделать с предметами: объединить их или удалить, чтобы ответить вопрос задачи, затем показать на карточке знак действия [5].

На третьей стадии происходит полное свертывание выполнения системы операций. Ученики про себя кратко объясняют решение задачи.

Такой методический подход в работе по обучению решению математических задач позволяет после третьей стадии обучения переходить к самостоятельному решению задач данного вида.

При формировании умения решать задачи на нахождение суммы и остатка учителя последовательно усложняли ситуации в задачах от конкретных к опосредованным, к задачам с косвенным указанием на выполнение операций.

Кроме того, на каждом уроке учащимся предлагались творческие задания: составить задания по "картинкам с точками" и решить их; сформулировать вопрос к данному условию задачи; составить задачи по указанному арифметическому действию [19].

Такая методическая работа позволяет добиться не только положительных результатов при обучении школьников решению задач на нахождение суммы и остатка, но и формирует у них понимание конкретного смысла арифметического действия сложения и вычитания.

Кроме того, рассмотренная методика является теоретической основой выбора арифметического действия при решении других задач первого года обучения на нахождение неизвестного слагаемого, вычитаемого, уменьшаемого.

Конечно, не следует думать, что данная методика - это единственный эффективный способ обучения решению задач первоклассников. Известны и другие методические приемы, где для осуществления поиска решения задачи используется наглядно-графический метод, в котором применяются: отрезки, числовая ось, диаграммы, графы и др.

Осуществление поиска решения в задачах на нахождение неизвестного слагаемого, вычитаемого, уменьшаемого помогает обращение к выбору способа решения. При арифметическом способе решения задач данного вида можно использовать "картинки с точками"; при алгебраическом - составление уравнения, используя при этом отрезки, "вычислительную машину", обращение к простейшему уравнению и другие методические приемы[19].