Файл: Министерство просвещения российск ой федерации.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.12.2023

Просмотров: 77

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
обучающиеся знакомятся с приѐмами решения задач перебором возможных вариантов, учатся работать с информацией, представленной в форме таблиц или диаграмм.

В рабочей программе предусмотрено формирование пропедевтических алгебраических представлений. Буква как символ некоторого числа в зависимости от математического контекста вводится постепенно. Буквенная символика широко используется прежде всего для записи общих утверждений и предложений, формул, в частности для вычисления геометрических величин, в качестве «заместителя» числа.

В курсе «Математики» 6 класса представлена наглядная геометрия, направленная на развитие образного мышления, пространственного воображения, изобразительных умений. Это важный этап в изучении геометрии, который осуществляется на наглядно-практическом уровне, опирается на наглядно-образное мышление обучающихся. Большая роль отводится практической деятельности, опыту, эксперименту, моделированию. Обучающиеся знакомятся с геометрическими фигурами на плоскости и в пространстве, с их простейшими конфигурациями, учатся изображать их на нелинованной и клетчатой бумаге, рассматривают их простейшие свойства. В процессе изучения наглядной геометрии знания, полученные обучающимися в начальной школе, систематизируются и расширяются.


  • МЕСТО УЧЕБНОГО КУРСА «МАТЕМАТИКА» В УЧЕБНОМ ПЛАНЕ

Согласно учебному плану в 6 классе изучается интегрированный предмет «Математика», который включает арифметический материал и наглядную геометрию, а также пропедевтические сведения из алгебры. Учебный план на изучение математики в 6 классе отводится 5 учебных часов в неделю, всего 175 учебных часов, 35 учебных недели.





I СОДЕРЖАНИЕ УЧЕБНОГО КУРСА «МАТЕМАТИКА»





В основном общем образовании необходимо предусмотреть подготовку обучающихся в соответствии с их запросами к уровню подготовки в сфере математического образования.

Математическое образование должно:

  • предоставлять каждому обучающемуся возможность достижения уровня математических знаний, необходимого для дальнейшей успешной жизни в обществе;

  • обеспечивать каждого обучающегося развивающей интеллектуальной деятельностью на доступном уровне, используя присущую математике красоту и увлекательность;

  • обеспечивать необходимое стране число выпускников, математическая подготовка которых достаточна для продолжения образования в различных направлениях и для практической деятельности, включая преподавание математики, математические исследования, работу в сфере информационных технологий [док. №8].

Натуральные числа. Арифметические действия с многозначными натуральными числами. Числовые выражения, порядок действий, использование скобок. Использование при вычислениях переместительного и сочетательного свойств сложения и умножения, распределительного свойства умножения. Округление натуральных чисел. Делители и кратные числа; наибольший общий делитель и наименьшее общее кратное. Делимость суммы и произведения. Деление с остатком.

Дроби. Обыкновенная дробь, основное свойство дроби
, сокращение дробей. Сравнение и упорядочивание дробей. Решение задач на нахождение части от целого и целого по его части. Дробное число как результат деления. Представление десятичной дроби в виде обыкновенной дроби и возможность представления обыкновенной дроби в виде десятичной. Десятичные дроби и метрическая система мер. Арифметические действия и числовые выражения с обыкновенными и десятичными дробями. Отношение. Деление в данном отношении. Масштаб, пропорция. Применение пропорций при решении задач. Понятие процента. Вычисление процента от величины и величины по еѐ проценту. Выражение процентов десятичными дробями. Решение задач на проценты. Выражение отношения величин в процентах.

Положительные и отрицательные числа. Положительные и отрицательные числа. Целые числа. Модуль числа, геометрическая интерпретация модуля числа. Изображение чисел на координатной прямой. Числовые промежутки. Сравнение чисел. Арифметические действия с положительными и отрицательными числами. Прямоугольная система координат на плоскости. Координаты точки на плоскости, абсцисса и ордината. Построение точек и фигур на координатной плоскости.

Буквенные выражения. Применение букв для записи математических выражений и предложений. Свойства арифметических действий. Буквенные выражения и числовые подстановки. Буквенные равенства, нахождение неизвестного компонента. Формулы; формулы периметра и площади прямоугольника, квадрата, объѐма параллелепипеда и куба.

Решение текстовых задач. Решение текстовых задач арифметическим способом. Решение логических задач. Решение задач перебором
всех возможных вариантов. Решение задач, содержащих зависимости, связывающих величины: скорость, время, расстояние; цена, количество, стоимость; производительность, время, объѐм работы. Единицы измерения: массы, стоимости; расстояния, времени, скорости. Связь между единицами измерения каждой величины. Решение задач, связанных с отношением, пропорциональностью величин, процентами; решение основных задач на дроби и проценты. Оценка и прикидка, округление результата. Составление буквенных выражений по условию задачи. Представление данных с помощью таблиц и диаграмм. Столбчатые диаграммы: чтение и построение. Чтение круговых диаграмм.

Наглядная геометрия. Наглядные представления о фигурах на плоскости: точка, прямая, отрезок, луч, угол, ломаная, многоугольник, четырѐхугольник, треугольник, окружность, круг. Взаимное расположение двух прямых на плоскости, параллельные прямые, перпендикулярные прямые. Измерение расстояний: между двумя точками, от точки до прямой; длина маршрута на квадратной сетке. Измерение и построение углов с помощью транспортира. Виды треугольников: остроугольный, прямоугольный, тупоугольный; равнобедренный, равносторонний. Четырѐхугольник, примеры четырѐхугольников. Прямоугольник, квадрат: использование свойств сторон, углов, диагоналей. Изображение геометрических фигур на нелинованной бумаге с использованием циркуля, линейки, угольника, транспортира. Построения на клетчатой бумаге. Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Приближѐнное измерение площади фигур, в том числе на квадратной сетке.