Файл: Образовательная программа среднего профессионального образования Комплект контрольнооценочных средств по учебным.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 06.12.2023

Просмотров: 111

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Размещения.


Размещениями из m-элементов по n называются соединения, каждое из которых содержит n элементов, взятых из данных m и которые отличаются друг от друга или элементами, или их порядком.

Предполагается, что элементы водном размещении не повторяются.





  1. Понятие графа. Способы задания графа. Методика выделения компонента

связности в графе

Графом G(V,E) называется совокупность двух множеств - непустого множества V (множества вершин) и множества Е неупорядоченных пар различных элемен­тов множества V (Е - множество ребер).

G(V,E): , E VxV.

Число вершин графа G обозначим р, а число ребер – q.

р(G) = |V| q(G) = |E|.

Часто рассматриваются следующие родственные графам объекты.

1. Если элементами множества Е являются упорядоченные пары, то граф назы­вается ориентированным (или орграфом). В этом случае элементы множества V называются узлами, а элементы множества - дугами (G(V, )).

2. Если элементом множества Е может быть пара одинаковых (не различных) элементов V, то такой элемент множества Е называется петлей, а граф назы­вается графом с петлями (или псевдографом).

3. Если Е является не множеством, а набором, содержащим несколько одинако­вых элементов, то эти элементы называются кратными ребрами, а граф назы­вается мультиграфом.

Далее выражение: граф G(V,E) означает неориентированный граф без петель и кратных ребер.

Обычно граф изображают диаграммой: вершины - точками (или кружками), ребра - линиями.


  1. Распознавание мостов и разделяющих вершин в графе

1. . .

Т.о. это неориентированный граф с петлей и кратными ребрами.

2
. . .

Рис. 1. Неориентированный граф с петлей и кратными ребрами.

Т.о. это ориентированный граф с петлей и кратными ребрами.





Рис. 2. Ориентированный граф с петлей и кратными ребрами.

3
. . , т.о.



  1. Нахождение расстояния между вершинами в графе.

Пусть v1, v2 - вершины, е = (v1, v2) - соединяющее их ребро. Тогда вершина v1 и ребро е инцидентны, вершина v2 и ребро е также инцидентны. Два ребра, инцидентные одной вершине, называются смежными; две вершины, инцидентные одному ребру, также называются смежными.

Степенью вершины v графа G(V,E) называется число ребер, инцидентных данной вершине. Обозначение: .

Вершина, имеющая степень 0 называется изолированной, имеющая степень 1 – висячей.





  1. Изоморфные графы. Эйлеровы графы

Изоморфизм графов


Говорят, что два графа G1(V1,E1) и G2(V2,E2) изоморфны (обозначается G1 G2), если существует биекция h: V1 V2, сохраняющая смежность.

Графы рассматриваются с точностью до изоморфизма.

Пример

Три внешне различные диаграммы, приведенные на рис. 1, являются диаграм­мами одного и того же графа К3,3.



Рис. 1. Диаграммы изоморфных графов

Числовая характеристика, одинаковая для всех изоморфных графов, называется инвариантом графа. Так, p(G) и q(G) - инварианты графа G.

Не известно никакого набора инвариантов, определяющих граф с точностью до изоморфизма.



Цикл, содержащий каждое ребро ровно один раз, называется эйлеровым. Граф, содержащий эйлеровый цикл, называется эйлеровым графом.





  1. Плоские графы. Деревья и их свойства

Деревом называется связный граф, не содержащий циклов. Любой граф без циклов называется ациклическим (или лесом). Таким образом, компонентами леса являются деревья. На рисунке 1 изображены все деревья шестого порядка.




  1. Проверка графа на плоскость.


Матрицей смежностей А(D) орграфа D называется (р×р)-матрица ||aij||, у которой aij= 1, если ViVj- дуга орграфа D, и aij=0 в противном случае. Матрица смежностей которого имеет вид (рис. 6):



Матрица смежности графа

Легко проверить, что суммы элементов по строкам матрицы A(D) равны полустепеням исхода вершин орграфа D, а суммы элементов по столбцам - полустепеням захода.

Как и в случае графов, степени матрицы смежностей А орграфа дают полную информацию о числе маршрутов, идущих из одной вершины в другую. Теорема. (i, j)-й элемент аijn матрицы А" равен числу маршрутов длины n, идущих из вершины vi в вершину vj.

8. ПРИЛОЖЕНИЕ-ВАРИАНТЫ БИЛЕТОВ