ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 07.12.2023
Просмотров: 111
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Пусть , соответственно .
При сложении этих волн получаем
. (1.8)
Здесь – амплитуда результирующей волны, а выражение (1.8) – уравнение плоской волны с медленно изменяющейся амплитудой. В данном случае имеется ряд одинаковых максимумов амплитуды, определяемых условием
(1.9)
Каждый из этих максимумов рассматривается как центр соответствующей группы волн. Разрешив выражение (1.9) относительно , получим:
, (1.10)
отсюда следует, что
, (1.11)
т.е. максимумы амплитуды результирующей волны перемещаются со скоростью u. Выражение (1.11) представялет собой групповую скорость для случая, когда группа волн образована двумя составляющими.
Для волнового пакета, состоящего из нескольких волн, мало отличающихся друг от друга по частоте, выражение (1.11) в пределе примет вид:
. (1.12)
Выражению (1.12) для групповой скорости можно придать другой вид. Заменив ω через Vk, представим (1.12) следующим образом
. (1.13)
Далее напишем
.
Из соотношения вытекает, что . Соответственно
. Подставив это значение в (1.13), получим
. (1.14)
Из этой формулы видно, что в зависимости от знака групповая скоростьu может быть как меньше, так и больше фазовой скорости V.
В отсутствие дисперсии , тогда групповая скорость совпадает с фазовой.
Следует также отметить, что для акустических и электромагнитных волн в средах с резонансным поглощением, а также в средах с периодической структурой (кристаллы) возможна даже ситуация, при которой групповая скорость u направлена противоположно фазовой.
Групповая скорость определяет скорость и направление переноса энергии волнами. Понятие групповой скорости играет важную роль и в физике, и в технике, поскольку все методы измерения скоростей распространения волн дают групповую скорость. Именно эта скорость фигурирует при измерении дальности в гидролокации, радиолокации, при зондировании атмосферы, при управлении космическими объектами, в теории связи и т.д.
Однако понятие групповой скорости в средах с сильным поглощением энергии волны неприменимо. Для таких сред вводят величину, характеризующую скорость переноса энергии.
Среды, в которых волны не поглощаются, называются прозрачными. В таких средах групповая скорости и скорость переноса энергии совпадают.
Стоячие волны. Волны называются когерентными, если они имеют одинаковую частоту, разность их фаз не изменяется во времени. При сложении двух или нескольких когерентных волн, в разных точках среды, получается усиление или ослабление результирующей волны. Это явление называется интерференцией волн. Одним из примеров сложения волн служит наложение двух плоских волн, бегущих вдоль оси Оx в среде без затухания в противоположных направлениях с одинаковыми амплитудой и частотой.
Выберем начало координат в точке, в которой обе волны имеют одинаковую начальную фазу, а отсчет времени начнем с момента, когда начальные фазы обеих волн равны нулю, т.е.
ξ1 (x,t) =Asin(wt – kx), ξ2(x,t)= Asin(wt +kx).
В этом случае результирующее смещение определяется формулой
ξ (x,t) =Asin(wt – kx)+Asin(wt +kx)=2Asinwt∙ coskx=B(x) sinwt,(1.15)
которая является уравнением стоячей волны.
Такое сложение мы можем наблюдать при отражении волн от преград. Падающая на преграду волна и бегущая ей навстречу отраженная, накладываясь друг на друга, образуют стоячую волну. Из (1.15) видно, что в каждой точке этой волны происходят колебания той же частоты, что и у встречных волн, причем амплитуда В зависит от координаты х:
В(х) = 2А cos kx = 2Acos2px/l.
В тех точках, где 2px/l = np (n = 0,1,2,...), амплитуда В достигает максимума, равного 2А. Эти точки называются пучностями стоячей волны. Координаты пучностей равны
хnуч = ±nl/2.
В точках, где 2pх/l = ±(n+1/2)p, амплитуда В обращается в нуль. Эти точки называются узлами стоячей волны. Точки среды, находящиеся в узлах, колебаний не совершают. Координаты узлов равны
xyз = ±(n ±½)l/2.
Из формул для координат узлов и пучностей следует, что расстояние между соседними узлами (так же как и соседними пучностями) равно l/2.
На границе раздела сред, где происходит отражение волны, может возникнуть узел или пучность, это зависит от соотношения плотностей сред. Если среда, от которой происходит отражение, менее плотная, то в месте отражения возникнет пучность (рис.1.9а), если более плотная – узел (рис.1.9б).
а) б)
Рис. 1.9
Образование узла связано с тем, что волна, отражаясь от более плотной среды, меняет фазу на противоположную и у границы раздела сред происходит сложение колебаний с противоположными фазами, в результате чего получается узел. Если же волна отражается от менее плотной среды, то фаза не измененяется и у границы раздела сред колебания складываются с одинаковыми фазами, в результате чего образуется пучность.
В случае стоячей волны переноса энергии колебаний нет, так как падающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях. Поэтому полная энергия колебаний частиц среды результирующей стоячей волны, заключенной между узловыми точками, остается постоянной.
4. Звук волны, их высота, давление и энергия.
Звуковые волны.
Важным видом продольных волн являются звуковые волны. Так называются волны с частотами 17 – 20000 Гц. Учение о звуке называется акустикой. В акустике изучаются волны, которые распространяются не только в воздухе, но и в любой другой среде. Упругие волны с частотой ниже 17 Гц называются инфразвуком, а с частотой выше 20000 Гц – ультразвуком.
Звуковые волны – упругие колебания, распространяющиеся в виде волнового процесса в газах, жидкостях, твердых телах.
Избыточное звуковое давление. Уравнение звуковой волны.
Уравнение упругой волны позволяет вычислить смещение любой точки пространства, по которому проходит волна, в любой момент времени. Но как говорить о смещении частиц воздуха или жидкости от положения равновесия? Звук, распространяясь в жидкости или газе, создает области сжатия и разряжение среды, в которых давление соответственно повышается или понижается по сравнению с давлением невозмущенной среды.
Если - давление и плотность невозмущенной среды (среды, по которой не проходит волна), а - давление и плотность среды при распространении в ней волнового процесса, то величина называется избыточным давлением. Величина есть максимальное значение избыточное давление (амплитуда избыточного давления).
Изменение избыточного давления для плоской звуковой волны (т.е. уравнение плоской звуковой волны) имеет вид:
, (30.1)
где y – расстояние от источника колебаний точки, избыточное давление в которой мы определяем в момент времени t.
Если ввести величину избыточной плотности
и ее амплитуды так же, как мы вводили величину избыточного звукового давления, то уравнение плоской звуковой волны можно было бы записать так:
. (30.2)
Ск орость звука — скорость распространения звуковых волн в среде. Как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях скорость звука меньше, чем в твёрдых телах. Чем больше плотность, тем больше скорость звука. Скорость звука в любой среде вычисляется по формуле: где β — адиабатическая сжимаемость среды; ρ — плотность.
Объективные и субъективные характеристики звука.
Само слово “звук” отражает два различных, но взаимосвязанных понятия: 1)звук как физическое явление; 2)звук – то восприятие, которое испытывает слуховой аппарат (человеческое ухо) и ощущения, возникающие у него при этом. Соответственно характеристики звука делятся на объективные, которые могут быть измерены физической аппаратурой, и субъективные, определяемые восприятием данного звука человеком.
К объективным (физическим) характеристикам звука относятся характеристики, которые описывают любой волновой процесс: частота, интенсивность и спектральный состав. В таблицу1. включены сравнительные данные объективных и субъективных характеристик.
Таблица1.
Субъективные характеристики | Объективные характеристики |
Высота звука | Высота звука определяется частотой волны |
Тембр (окраска звука) | Тембр звука определяется его спектром |
Громкость (сила звука) | Сила звука определяется нтенсивностью волны (или квадратом ее амплитуды) |
Частота звука