Файл: Умк Школа России. Основные положения. Методические особенности обучения математики.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.12.2023
Просмотров: 137
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
19. Методы и приемы работы над математическим материалом по программе М.И. Моро.
В программе Моро М.И. уделяется значительное внимание формированию у учащихся осознанных и прочных, во многих случаях доведенных до автоматизма навыков вычислений, программа предполагает вместе с тем и доступное детям обобщение учебного материала, понимание общих принципов и законов, осознание тех связей, которые существуют между рассматриваемыми явлениями. Формирование понятий о натуральном числе и арифметических действиях начинается с первых уроков и проводится на основе практических действий с различными группами предметов. Такой подход дает возможность использовать ранее накопленный детьми опыт, их первоначальные знания о числе и счете. Это позволяет с самого начала вести обучение в тесной связи с жизнью. Приобретаемые знания дети могут использовать при решении разнообразных задач, возникающих в их игровой и учебной деятельности, а также в быту [Александрова, 2008, с.89]. Вместе с тем с самого начала обучения у детей формируются некоторые важные обобщения. Так, на примере чисел первого десятка выясняется, как образуется каждое следующее число в натуральном ряду, устанавливается соотношение между любым числом ряда и всеми предшествующими или последующими числами, учащиеся знакомятся с различными способами сравнения чисел (сначала на основе сравнения соответствующих групп предметов, а затем по месту, которое занимают сравниваемые числа в ряду). При изучении сложения и вычитания в пределах 10 дети знакомятся с названиями действий, их компонентов и результатов, терминами равенство, неравенство. При этом имеется в виду, что математические термины должны усваиваться детьми естественно, как усваиваются ими любые новые для них слова, если они часто употребляются окружающими и находят применение в практике. В дальнейшем, во II классе, вводятся термины выражение, значение выражения. Помимо терминологии, дети усваивают и некоторые элементы математической символики: знаки действий (плюс, минус), знаки отношений (больше, меньше, равно); они учатся читать и записывать простейшие математические выражения вида 5 + 4, 7 - 2, а также более сложные выражения вида 6 + (6 - 2). Вместо привычного "Решение примеров" в речи учителя и учащихся звучит: "Найдем значение выражения", "Сравним выражения" и т.п.
В программе предусмотрено ознакомление с некоторыми свойствами арифметических действий и основанными на них приемами вычислений. Так, в теме "Числа от 1 до 10" дети знакомятся с переместительным свойством сложения, учатся пользоваться приемом перестановки слагаемых в тех случаях, когда его применение облегчает вычисления (например, в случаях вида 2 + 7, 1+6 и т.п.). На основе практических действий с предметами учащиеся знакомятся с тем, что прибавить или вычесть число можно по частям (например, 6 + 3 = 6 + 2+1, 6 - 3 = 6 - 2-1). Таким образом учащиеся практически знакомятся с сочетательным свойством сложения, которое во II классе будет специально рассмотрено и сформулировано. Ознакомление со связью между сложением и вычитанием дает возможность находить разность, опираясь на знание состава чисел и соответствующих случаев сложения [Моро, 2009, 87 с.] В результате изучения темы "Письменные приёмы сложения и вычитания " учащиеся должны:
1) понимать конкретный смысл действий сложения и вычитания, что проявляется в умении правильно выбрать одно из этих действий при решении задач;
2) знать взаимосвязь, существующую между этими действиями, о чем может свидетельствовать прежде всего умение проверить правильность сложения с помощью вычитания (и наоборот), а также умение решать уравнения на нахождение неизвестного слагаемого, уменьшаемого и вычитаемого;
3) понимать, что складывать можно сколько угодно чисел и в любом порядке, применяя это при вычислениях;
4) знать, как изменяется сумма при изменении одного из слагаемых и разность при изменении уменьшаемого или вычитаемого, т.е. уметь правильно отвечать на вопросы вида: "Одно из двух слагаемых увеличили на 5. Как изменится сумма?"; "Используя равенство 248 + 372 = 620, найдите значение выражения (248 + 90) + 372" и т.п.;
5) овладеть навыком сложения и вычитания многозначных чисел, что должно подтверждаться положительной оценкой выполнения письменных и устных вычислений (в соответствии с нормами оценок).
На первом из уроков, посвященных изучению сложения и вычитания многозначных чисел, главной задачей является распространить уже известные учащимся правила (алгоритм) сложения и вычитания трехзначных чисел на числа четырехзначные, пятизначные и т.п. Как правило, этот перенос большинству учащихся дается довольно легко. И если у некоторых из них и появляются затруднения в основном связаны с двумя обстоятельствами:
1) с плохим знанием таблицы сложения однозначных чисел;
2) с неумением распорядиться суммой разрядных слагаемых в том случае, когда она является двузначным числом.
Поэтому, приступая к работе над новым материалом, следует рассмотреть два-три примера сложения и вычитания трехзначных чисел, подробно вспомнив правила выполнения действий и сопровождая выполнение действий достаточно подробными объяснениями, как это делалось во II классе [Моро, 2009, с.76].
Затем предлагается выполнить с комментированием сложение и вычитание четырех- и пятизначных чисел. Заметим, что сравнительно сложным случаям вычитания, когда, например, уменьшаемое содержит несколько нулей подряд, целесообразно посвятить специальный урок. При этом последовательно можно рассмотреть, например, как выполняются действия в следующих случаях:
100 200 2000 4 34 197 и т.п.
В каждом из случаев подробно рассматривается процесс "занимания" и замены 1 единицы высшего разряда 10 единицами ближайшего низшего разряда. Например, при решении первого из приведенных примеров можно сказать: "Из нуля единиц вычесть 4 единицы нельзя. Возьмем одну сотню (для памяти над ней поставим точку) и заменим ее 10 десятками. "Займём" 1 десяток, 9 десятков этой сотни оставим в разряде десятков, а 1 десяток заменим 10 единицами. Из 10 единиц вычтем 4 единицы, получится 6 единиц. Записываем их под единицами. Из 9 десятков ничего не вычитается, поэтому число 9 подписываем в результате под десятками".
Учащиеся уже имеют определенные представления о взаимосвязи вычитания и сложения. Они часто использовали их в I и II классах, например, для решения уравнений вида: х + 2 = 7; х - 3 = 5 и т.п.
При этом для нахождения одного из слагаемых им приходилось выполнять вычитание, а при нахождении уменьшаемого - сложение. В III классе, не давая определения вычитания через сложение (оно будет дано позже, в IV классе), можно показать учащимся, как вычитание связано со сложением. Например, обратить внимание детей на то, что вычесть из числа 27 число 15 - значит найти такое число, которое при сложении с числом 15 даст число 27. Это число 12.
27 - 15 = 12, потому что 15 + 12 = 27.
Выявление этой связи должно быть использовано для проверки вычитания с помощью сложения и наоборот. Нужно приучить детей без специального указания или требования со стороны учителя обязательно выполнять проверку результатов вычислений одним из способов. Проверка должна стать необходимой частью решения вычислительной задачи [Моро, 2009, с.54].
В ходе изучения рассматриваемой темы обобщаются представления об основных свойствах сложения. Необходимо убедиться в том, что переместительное свойство сложения имеет место и для трех и для четырех и для большего числа слагаемых. Для этого достаточно вычислить значение одного и того же выражения (суммы трех или четырех слагаемых), меняя местами рядом стоящие слагаемые. Необходимо рассмотреть достаточно яркие примеры, убеждающие в том, что применение переместительного свойства может упростить вычисления. Например, при нахождении суммы 27 + 92 + 73 учащиеся должны заметить, что если поменять местами слагаемые 92 и 73, то в сумме 27 + 73 + 92 первые 2 слагаемых дадут число 100, а найти сумму 100 и 92 не представляет труда. Сразу после этого, в связи с изучением порядка действий и применением скобок для записи выражений, необходимо ознакомить учащихся с возможностью группировать слагаемые при вычислении суммы (сочетательное свойство суммы). Наконец, делается вывод, который постепенно усваивается в виде правила: "При сложении трех и более чисел любые два (или больше) числа можно заменить их суммой". Наиболее важным при этом является усвоение не самой формулировки правила, а формирование умений использовать сочетательное свойство суммы в вычислениях, вначале на примерах, а затем и одновременно с применением переместительного свойства, например: 27 + 196 + 33 + 4 = (196 + 4) + (27 + 33) = 200 + 60 = 260.
В связи с такими упражнениями нужно целенаправленно готовить учащихся к выводу, что в выражениях, составленных только с помощью знака "+", наличие или отсутствие скобок не влияет на их значение.
В методике, обеспечивающей правильное и осознанное усвоение детьми порядка выполнения действий, достигается правильное понимание роли скобок наряду с опорой на свойства сложения и вычитания и известных учащимся с I класса некоторых следствий из них (правила "прибавления к числу суммы", "... суммы к числу", "вычитания из числа суммы" и т.п.). Исключительно важную роль при этом играют навыки чтения выражений и составления выражений. Совершенствование этих навыков должно представлять непрерывный процесс с постоянным усложнением требований. Большое значение имеет в этом отношении решение текстовых задач с помощью составления выражений или уравнений. Работа по формированию указанных выше умений, как правило, должна быть тесно связана с совершенствованием вычислительных навыков, с усвоением алгоритмов выполнения сложения или вычитания. Этой цели отвечают, например, упражнения вида: "Запиши с помощью знаков действий и вычисли:
а) сумму числа 1127 и разности чисел 3957 - 2839;
б) выражение, в котором уменьшаемое есть число 20 137, а вычитаемое выражено суммой чисел 7213 и 2931". Примеры такого рода учитель найдёт в учебнике. Следует, однако, предостеречь учителя от необоснованного усложнения формулировок и содержания аналогичных заданий и превышения уровня сложности приведенных выше примеров.
20. Методы и приемы работы над математическим материалом по программе Л.Г. Петерсон
Основная особенность деятельностного метода заключается в том, что новые математические понятия и отношения между ними не даются детям в готовом виде. Дети «открывают» их сами в процессе самостоятельной исследовательской деятельности. Учитель лишь направляет эту деятельность и в завершении подводит итог, давая точную формулировку установленных алгоритмов действия и знакомя с общепринятой системой обозначений. Таким образом, дети строят свою математику, поэтому математические понятия приобретают для них личностную значимость и становятся интересными не с внешней стороны, а по сути.
Еще одной особенностью использования деятельностного метода является необходимость предварительной подготовки детей в плане развития у них мышления, речи, творческих способностей, познавательных мотивов деятельности. Специальная работа в этом направлении предусмотрена в течение всех лет обучения детей в начальной школе, но особенно на начальных этапах обучения – в I полугодии 1 класса.
Методика работы над задачей очень интересна. Была проведена подготовительная работа по обучению детей решению текстовых задач на сложение и вычитание.
Учащиеся составляли по картинкам различные задачи, подбирали к ним соответствующие числовые выражения; сравнивали эти выражения. Текстовые задачи систематически включались в устные упражнения.
Таким образом, дети фактически уже умеют решать простые задачи на сложение и вычитание. На данном этапе обучения уточняются термины, связанные с понятием «задача», рассматривается краткая запись содержания задач с помощью схем, вводится понятие обратной задачи. В игровой, доступной для учащихся форме ставится вопрос о корректности ее формулировки.
21. Методы и приемы работы над математическим материалом по программе В.Н. Рудницкой.
Проработав год по новому для себя курсу, не могла не оценить эффективность новых подходов к отбору содержания и обучения его методической обработки. Анализ проведенной работы показал, что данный курс действительно является результатом качественного пересмотра общих целей и конкретных задач обучения математике, продиктованного современными требованиями к начальному математическому образованию
Современное начальное математическое образование направлено на развитие образного и логического мышления, воображения; формирование предметных умений и навыков, необходимых для успешного решения учебных и практических задач, продолжение образования; формирование первоначальных представлений о математике, воспитание интереса к математике и стремление использовать математические знания в повседневной жизни. Что и предусматривают современные стандарты образования. Проект направлен в первую очередь на полноценное индивидуальное развитие ребенка и его успешное обучение. Именно поэтому особое значение в нем играет педагогическая диагностика. Педагогическая диагностика дополняет психологическую диагностику и дает возможность уже на начальном этапе определить готовность ученика к обучению в начальной школе.