Файл: Лабораторная работа 6 двухтактный бестрансформаторный.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 168

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1 Цель работы

2 Задание

3 Описание принципиальной схемы исследуемого усилителя

Методические указания по выполнению работы

5 Содержание отчета

Однотактные выходные каскады Различают резисторные, трансформаторные и дроссельные выходные каскады. Резисторные каскады предназначены для усиления высоких уровней напряжения и ши-роко применяются в операционных усилителях, УПТ, балансных и дифференциальных каскадах, широкополосных и импульсных усилителях [2,3].Применение согласующего трансформатора в выходных каскадах позволяет обеспечи- вать оптимальное, с точки зрения согласования с нагрузкой, сопротивление в выходной цепи АЭ. Трансформаторные выходные каскады получили широкое применение в усили- телях многоканальной связи, когда входной и выходной трансформаторы выполняют функцию не только согласующих цепей, но и являются компонентом цепи общей частот- но-зависимой отрицательной ОС.Дроссельный каскад, обладая свойствами во многом схожими с трансформаторным каскадом, при этом не позволяет обеспечивать оптимальное сопротивление нагрузки и по- этому находит ограниченное применение.ТрансформаторныйкаскадВ однотактном выходном каскаде усиление осуществляется одним транзистором (рис.6.39,а), работающем в режиме Аа) б)Рис.6.39Выходной трансформатор Т преобразует сопротивление внешней нагрузки Rн (например, волновое сопротивление коаксиальной линии) в сопротивление коллекторной нагрузки Rн к :Rн к = r 1 + (r 2+ Rн)/n2т , (6.1)где r 1 и r 2 — активные сопротивления первичной и вторичной обмоток трансформатора (сопротивление потерь, которым обычно пренебрегают, т.к. Rн >> r 1 + r 2); nт = ω 1/ω 2 – коэффициент трансформации, где ω 1 и ω 2 – число витков первичной и вторичной обмо- ток трансформатора.Выходной трансформатор одновременно позволяет исключить взаимное влияние на- грузки на режим работы АЭ и, наоборот. Нагрузочная прямая ВС (рис.6.41,б), наклон ко- торой величиной сопротивления Rн к, проходит через точку А, положение которой опреде- ляется режимом в ИРТ (Uкэ0, I к0), задаваемой на нагрузочной прямой по постоянному то- ку. Если сопротивление первичной обмотки трансформатора r 1 = 0, то нагрузочная прямая по постоянному току проходит вертикально через точку А и Uкэ0 = Е. Временные диа- граммы (рис.6.41,б) отражают характер мгновенных значений коллекторного тока и на- пряжения максимально возможной амплитуды при усилении гармонического сигнала. Точки В и С определяют границы используемой нагрузочной прямой при работе транзи- стора в режиме А. Точка В соответствует границе перехода в режим насыщения, а точка С– в режим отсечки. Напряжение в точке В и ток в точке С являются минимальными и на- зываются остаточными (u ост, i ост).Эффективность работы транзистора определяется коэффициентамииспользованиятока и напряжения транзистора i Iкm / Iк0, u Uкm /Uк0, (6.2) где Uкэm, I кm – амплитуда напряжения и тока на коллекторе транзистора (рис.6.41,б) Коэффициентыi и u выбирают исходя из требований получения максимально воз- можной выходной мощности при заданном уровне нелинейных искажений, что ограни- чивает их значения в реальных условиях до величины 0,8 …0,9.Мощность, отдаваемая в эквивалентную нагрузку транзистора в коллекторной цепи, Rн кР = 0,5 Uкэm I кm (6.3)Мощность, потребляемая от источника питанияР0 = 0,5 Uкэ0 I к0 (6.4)При этом КПД каскада будетη = Р/ Р0 = Uкэm I кm/2Е I к0 = 0,5 i u0 , (6.5)где Е – напряжение источника питания, а 0 = U кэ0 /Е – коэффициент использования на- пряжения источника питания.Поскольку 0 <1, u<1, i< 1, а I кm < I к0 , Uкэm < U кэ0< , то КПД каскада всегдаменьше 50%, хотя и выше чем для резисторного каскада. Обычно коэффициенты исполь- зования не стремятся получать наибольшими (равными единице) поскольку вблизи точек В и С работа транзистора сопровождается большими нелинейными искажениями.С учетом КПД трансформатора η т , мощность отдаваемая в реальную нагрузку RнР н = Р·ηт (6.6)Транзистор выбирают по значению мощности, рассеиваемой на коллекторе Р к.макс по ус- ловиюР к.макс  (2,5…3,5) Р (6.7)Поскольку мощность на нагрузке пропорциональна квадрату амплитуды напряжения, то в режиме А (при неизменном среднем токе питания) уменьшение амплитуды напряже- ния на нагрузке приводит к быстрому уменьшению КПД. Кроме того, как показывает (6.5) мощность, выделяемая на коллекторе транзистора Р кР к = Р0 — Р (6.8)будет сильно изменяться при колебаниях уровня входного сигнала.К другим недостаткам трансформаторных каскадов следует отнести большие размеры, массу, стоимость, сравнительно узкую полосу пропускания и невозможность реализации усилителя по интегральной технологии. 1   2   3   4   5   6   7   8

Двухтактные выходные каскады Двухтактными называют каскады, содержащие два усилительных элемента (иногда две группы параллельно соединенных АЭ), работающих на общую нагрузку, а фазы выходных токов которых, противоположны. Отдельно взятый АЭ, с цепями связи и питания, обра- зует плечо двухтактного каскада.В зависимости от способа управления АЭ двухтактные каскады подразделяются на кас- кады: с параллельным управлением однофазным входным напряжением (при использовании в качестве АЭ БТ применяют транзисторы с разным типом проводимости, работающие в режиме В или АВ) с параллельным управлением двухфазным напряжением (применяют однотипные БТ, ра- ботающие в режиме А или АВ) с последовательнымуправлениемоднофазнымнапряжением (применяют однотипные БТ, работающие в режиме А, когда сигнал с выхода первого из них, подается на вход вто- рого). Благодаря отличию фаз выходных токов на π происходит частичная компенсация нели- нейных искажений, вносимых плечами. Использование режима А в выходных каскадах обеспечивает очень малые нелинейные искажения, меньшие чем в однотактной схеме. Транзисторные схемы двухтактных оконечных каскадов, использующих выходной трансформатор, могут выполняться с резисторно-емкостной или с трансформаторной свя- зью с предоконечным каскадом (рис.6.40)Рис.6.40Резисторы R1 и R2 – делитель напряжения питания, обеспечивающий смещение на оба транзистора VT1 и VT2и задающий ток коллектора каждого транзистора I к0 в исходной рабочей точке. Резистор R3 — сопротивление эмиттерной температурной стабилизации. Для выравнивания коллекторных токов плеч вместе с резистором R3 могут быть дополни- тельно включены резисторы в эмиттерные цепи каждого транзистора. При работе усили- тельных элементов в режиме В резисторы в цепях эмиттеров отсутствуют. Входные на- пряжения u вх1 и u вх2 равны по величине и противоположны по фазе. Трансформатор Т1 обеспечивает получение противофазного напряжения, необходимого для возбуждения оконечного каскада, т.е. является фазоинверсным звеном. При открывании одного транзи- стора другой закрывается, т.е. транзисторы работают поочередно, создавая токи коллекто- ров iк2 и iк3 . Эти токи протекая через первичную обмотку трансформатора Т2 индуциру- ют во вторичной обмотке токи, протекающие через нагрузку во встречных направлениях. Нагрузка Rн подключена к транзисторам через выходной трансформатор со средней точ- кой в первичной обмотке.Для трансформатора Т со средней точкой мгновенные напряжения на входе каждой из плеч при косинусоидальном входном сигнале можно представитьu вх1 = U mвхcos ωt; (6.9)u вх2 = U mвхcos (ωt+π) = — U mвхcos ωt. (6.10)Ток iк2 в коллекторной цепи транзистора VT2 под действием напряжения u вх1 вне зави- симости от режима работы транзистора (А, В, АВ) можно представить разложением в ряд Фурьеiк2  Iср  Im1 cost Im2 cos 2t Im3 cos3t ..... , (6.11)где I ср — среднее значение коллекторного тока, I m1, I m2, I m3, …- амплитуды соответ- ствующих гармоник коллекторного тока (полагая начальные фазы равными нулю). Кол- лекторный токi3 транзистора VT3 с учетом входного воздействия (6.10) представляем разложением в ряд Фурье заменой аргументов ωt на ωt+πiк3  Iср  Im1 cost Im2 cos 2t Im3 cos3t .....(6.12) Поскольку токи iк2 и i3в первичной обмотке трансформатора Т2 протекают встречно, создавая встречный магнитный поток, пропорциональный разности iк2 — i3 , то ток в на- грузке,iн = d ( iк2 — i3 ) (6.13)обусловленный этим потоком,iн d(2Im1 cost 2Im3 cos3t .....) , (6.14)где d – коэффициент пропорциональности содержит только удвоенные нечетные гармони- ки.Из выражений (6.13) и (6.11), (6.12) следует, что четные гармоники компенсируются, не создавая магнитный поток, а, следовательно, напряжение на нагрузке отсутствует.Анализируя соотношение (6.14) можно заметить, что двухтактный каскад обладает ря- дом положительных свойств. компенсация четных гармоник, т.к. они, входя в состав токов плеч каскада, изменя- ются синфазно, взаимно уничтожаясь в нагрузке. отсутствие постоянного тока подмагничивания магнитной цепи выходного транс- форматора, поскольку при отсутствии сигнала через первичную обмотку протекают рав- ные токи iк2 и i3 , создающие равные и противоположные магнитные поля, компенсирую- щие друг друга. Это позволяет уменьшить габариты и стоимость выходного трансформа- тора. относительно небольшая чувствительность к пульсациям питающего напряжения. Это объясняется тем, что токи покоя обоих плеч изменяются одинаково и поэтому их раз- ность оказывается равной нулю. В связи с этим, допускаются пульсации напряжения ис- точников питания для двухтактных схем в 3-5 раз выше, чем для однотактных. отсутствие тока частоты усиливаемого сигнала в цепи источника питания; поскольку суммарный ток, проходящий через источник питания, не содержит составляющей частоты входного воздействия. Это снижает требования к фильтрам на выходе источников пита- ния, упростить развязывающие межкаскадные фильтры.ДвухтактныекаскадыврежимеВДвухтактные каскады в режиме А создают очень малые нелинейные искажения, но при этом обладают относительно низкими энергетическими показателями. Работа АЭ в двух- тактных выходных каскадах в режиме В позволяют получать высокий КПД и малую мощ- ность потерь в транзисторах. Переход АЭ в режим В достигается исключением цепи сме- щения (R3, рис.6.40). Ток покоя в этом режиме равен нулю (практически очень мал), что реализует очень экономичный режим работы выходных АЭ. Транзисторы работают стро- го поочередно,пропуская полуволну в свой полупериод (рис.6.41,а). а) б)Рис.6.41Во второй полупериод он заперт и ток питания не потребляет. В этот полупериод работа- ет другой транзистор. Нагрузочная прямая транзистора одного плеча выходит из исходной РТ А, в которой iк = 0, U к = E. Ее наклон определяется сопротивлением нагрузки по пе- ременному току Rн к. Для схемы (рис.6.40) его величина определяется значением сопро- тивления нагрузки, пересчитанной к первичной полуобмотке трансформатора Т2 (R3= 0):Rн к1 = Rн n2 т1 η т, (6.15)где nт1 = ω 2/0,5ω 1 – коэффициент трансформации одного плеча выходного трансформа- тора, η т – КПД трансформатора. Максимальная мощность, отдаваемая транзисторами Р

Приближенное изображение функциональной зависимости

(рис.6.17) выбираем варьируемый компонент R9.



Рис.6.18

Затем, на первой закладке (рис.6.18) указываем варьируемыйкомпонент (рис.6.3.2)и пределы изменения сопротивления от (рис.6.3.3) до (рис.6.3.4)сшагом (рис.6.3.5)через 10 Ом.
Точка в рамке (рис.6.3.6)указывает на подтверждение режима варьиро-
вания компонента R9. Метка в рамке (рис.6.3.7)указывает на ме- тод изменения шага варьируемого компонента линейный. Может применяться также ло-гарифмический закон или некоторый перечень список. В рамке

(рис.6.3.8)указывается тип изменяемого парамет-ра, что может быть или компонентом или параметрами модели какого-либо компонента, также индексами компонента. Закон изменения выбранного параметра указывается в рам- ке (рис.6.3.9). При вариации не-

скольких компонентов возможны варианты (профессиональная версия МС9), когда одно- временно изменяются все параметры (рис.6.3.10) или происходит вариация групп параметров, в некоторой последовательности

(рис.6.3.11) (выбран этот вариант). Кнопка (рис.6.3.12)включает вариацию
всех

компонентов, указанных на закладках, а кнопка (рис.6.3.13)отключает варьи-

рованиевсехпараметров. Кнопка (рис.6.3.14) отменяет варьирование парамет- ров в пределах, указанных на закладках для каждого параметра, и устанавливает переделы и шаг изменения по умолчанию. Кнопка

(рис.6.3.15)отменяетранее веденные указания. Кнопка

(рис.6.3.16)позволяет обращаться к файлу помощипрограммы. Нажатие на

кнопку

(рис.6.3.17)включает режим варьирования параметров для условий, выбран-

ных в подменю . (рис.6.3.1)

Нажатие на копку

(рис.6.3.17)одновременно возвращает в окно результатов, где нажатием на пиктограмму (рис.6.3.18) входят в режим анализа. Результаты анализ, приведенные на рис.6.19 показывают, что

Рис.6.19

Например, при сопротивлении ОС R9 =110 Ом наблюдается ограничение при положи- тельной полуволне выходного напряжения, а при R9 = 50 Ом – при отрицательной. Значе- ние сопротивления, при котором характер зависимости выделяется цветом на семействе кривых, указывается при нахождении в окне результатов активизацией пиктограммы (рис.6.3.19) (рис.6.3.20). Таким образом можно проанализировать все кривые. Более просто, находясь в окне результатов, подвести курсор к любой их выбран- ных кривых, еще обладающей или уже не обладающей ограничением сверху или снизу, и

выбрать пару таких, у которых нет ограничений ни сверху, ни снизу. При этом в окне ря- дом с курсором указывается текущее значение положения курсора и величина сопротив- ления резистора R9. Полусумма значений этих сопротивлений R9 опт обеспечивает форму выходного напряжения без отсечки, при выбранной амплитуде сигнала (GIN) на входе усилителя. Полученное значение сопротивления R9 установить в схеме (рис.6.16), заме- нив R9 =77 Ом, и, проведя моделирование во временной области (вводя пределы анализа в спектральной области по аналогии с рис.6.14, подменю

(рис.6.2.58)) вычислите к г и Um ср. Результаты моде-

лирования внесите в таблицу 3.
Эпюрывыходныхтоковтранзисторов
Форму коллекторных токов транзисторов для схемы (рис.6.22)



Рис.6.20

получают последовательно выполняя команды Analysis Transient… Transient Analysis Limits → Run, находясь в окне схем (рис.6.20)

Рис.6.21

для значения сопротивления ОС R9 = 77 Ом, используя подменю

(рис.6.2.58) (рис.6.22)



Рис.6.22

Активируя пиктограммы (рис.6.3.21) (Peak) и (рис.6.3.22) (Valley) в окне резуль- татов, по аналогии с рис.6.17, определим амплитуду тока I mк3 и максимальные значения коллекторных токов I к1 max , I к2 max, результаты измерения вставим в таблицу 3 (необхо- димо активизировать строку Harm (V(5)) рис. 6.22). Заменив значение сопротивления
ОС на оптимальное (R9 опт), повторите эксперимент и результаты внесите в таблицу 3.
Выбороптимальногозначенияамплитудынапряжениянавходеусилителя
Выходное напряжение формируется токами коллекторными плеч выходного каскада, протекающими через сопротивление нагрузки. Оценим влияние на форму выходного на- пряжения амплитуды напряжения на входе усилителя (напряжения возбуждения). Для этого выберем файл лабораторной работы 6.3.4 (рис.6.23)

Рис.6.23

Находясь в окне схем, и выполнив последовательно команды Analysis Transient…


Transient Analysis Limits Stepping, войдем в подменю (рис.6.3.1). Ис-

пользуя линейки прокрутки выберем в качестве варьируемого параметра амплитуду А компонента V5 (рис.6.24)

a)



б) Рис.6.24

Функциональные возможности кнопок и надписей подменю (рис.6.3.1)описаны ранее при определении оптимального значения сопротивления ОС R9 опт. Для выбранных значений пределов и шага изменения амплитуды входного сигнала А, нажав ОК, а затем в окне результатов пиктограмму (рис.6.3.23) (Run), получим се- мейство кривых (рис.6.25)



Рис.6.25

Выбрав подменю (рис.6.3.20)в окне результатов можно легко выделить значения амплитуды на входе, с которой возникает режим ограничения коллекторного то- ка одного из транзисторов (I к1), а затем, перейдя на другое семейство кривых, (I к2). Опре- делив таким образом значение амплитуды (А опт), соответствующей линейному работы транзисторов (отсутствие ограничения коллекторного тока), измените значение амплиту- ды в описании генератора гармонических колебаний (GIN). Для значения амплитуды Аопт повторите эксперимент (рис.6.15, 6.16) по вычислению коэффициента гармоник напряже- ния на выходе усилителя мощности (файл 6.3.1) при оптимальном сопротивлении ОС (R9 опт) и оптимальной амплитуде входного сигнала (А опт). Результаты вычислений внесите в таблицу 3.

2.2.5 Температурная