Файл: Рабочая программа по математике составлена на основе.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 09.01.2024
Просмотров: 60
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Раздел 1. Пояснительная записка
Рабочая программа по математике составлена на основе:
- Федерального Государственного образовательного стандарта основного общего образования по математике;
- Математика. Сборник рабочих программ. Составитель. Составитель Т.А. Бурмистрова, М.: Просвещение, 2014 г.__
- авторской программы Г.В. Дорофеева, И.Ф. Шарыгина. Математика 5-6 класс/ Программы для общеобразовательных учреждений. Математика 5-6 класс. М. Просвещение , 2009 г/.
Примерная программа конкретизирует содержание предметных тем образовательного стандарта и дает примерное распределение учебных часов по разделам курса. Сознательное овладение учащимися системой арифметических знаний и умений необходимо в повседневной жизни, для изучения смежных дисциплин и продолжения образования.
Практическая значимость школьного курса математики 5 класса обусловлена тем, что объектом изучения служат количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика – язык науки и техники. С ее помощью моделируются и изучаются явления и процессы, происходящие в природе.
Арифметика является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. Развитие логического мышления учащихся при обучении математики в 5 классе способствует усвоению предметов гуманитарного цикла. Практические умения и навыки арифметического характера необходимы для трудовой и профессиональной подготовки школьников.
Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности воображения, арифметика развивает нравственные черты личности (настойчивость, целеустремленность, творческую активность, самостоятельность мышления) и умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.
Изучение математики в 5 классе позволяет формировать умения и навыки умственного труда: планирование своей работы, поиск рациональных путей ее выполнения, критическую оценку результатов.
Важнейшей задачей школьного курса арифметики является развитие логического мышления учащихся. Показывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, арифметика вносит значительный вклад в эстетическое воспитание учащихся.
Общая характеристика курса математики 5—6 классов
Концепция курса
Учебно-методические комплекты «Математика. 5 класс» и «Математика. 6 класс» — составная часть единой линии УМК по математике для
5—9 классов, в которых преемственные связи прослеживаются не только в содержательном плане, но и в методических подходах.
К общим идеям, составляющим основу концепции курса, относятся:
-
интеллектуальное развитие учащихся средствами математики; -
ознакомление с математикой как частью общечеловеческой культуры; -
развитие интереса к математике; -
создание условий для дифференциации обучения; -
внимание к практико-ориентированному знанию.
Центральная идея — интеллектуальное развитие учащихся средствами математики, и прежде всего таких его компонентов, как интеллектуальная восприимчивость, способность к усвоению новой информации, подвижность и гибкость, независимость мышления. Эта идеяполностью коррелирует с идеологией новых образовательных стандартов, в которых ставится задача эффективного использования потенциала школьных предметов для развития личностных качеств обучаемых.
Идея развивающего обучения реализуется в учебниках через систему методических решений. УМК содержит достаточный и специальным образом организованный учебный материал (теорию и задачи), обеспечивающий формирование универсальных учебных действий. Школьники имеют возможность овладевать исследовательскими и логическими действиями, предполагающими умение видеть проблему, ставить вопросы, наблюдать и проводить эксперименты, делать несложные выводы и умозаключения, обосновывать и опровергать утверждения, сравнивать и классифицировать.
Эффективности интеллектуального развития способствует понимание и осознание самогопроцесса мыслительной деятельности (механизмов рассуждений, умозаключений). Поэтому в доработанных в соответствии с ФГОС изданиях учебников инициируется рефлексия способов и условий действий, акцентируется внимание на собственно процессе решения задачи.
Развитие мышления тесно связано с речью, со способностью грамотно говорить, правильно выражать свои мысли. Свидетельством чёткого и организованного мышления является грамотный математический язык. Обучение математическому языку как специфическому средству коммуникации в его сопоставлении с реальным языком авторы считают важнейшей задачей, для решения которой используются адекватные методические приёмы.
Отличительной особенностью данного УМК является внимание к развитию и формированию различных видов мышления. Этому, в частности, способствует включение в курс большего, чем это бывает традиционно, объёма геометрического материала. Изучая геометрию, учащиеся начинают последовательное продвижение в развитии мышления от конкретных, практических его форм до абстрактных, логических.
Серьёзное внимание в УМК уделяется формированию личностно-ценностного отношения к математическим знаниям, развитию интереса к предмету, знаниям культурологического характера. Авторы ставят целью доступное, живое изложение содержания курса, создание учебников, которые можно читать.
Место курса в учебном плане.
Базисный учебный (образовательный) план на изучение математики в 5 классе основной школы отводит 5 часов в неделю в течение всего года обучения, всего 170 уроков.
Основные цели и задачи
Изучение математики в основной школе направлено на достижение следующих целей:
-
в направлении личностного развития
-
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту; -
формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта; -
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения; -
формирование качеств мышления, необходимых для адаптации в современном информационном обществе; -
развитие интереса к математическому творчеству и математических способностей.
В метапредметном направлении
-
формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества; -
развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования; -
формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.
Задачи предмета:
-
Развитие алгоритмического мышления, необходимого для освоения курса информатики; овладение навыками дедуктивных рассуждений, развитие воображения, способностей к математическому творчеству. -
Получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов, для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры. -
Формирование языка описания объектов окружающего мира для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. -
формирование у учащихся умения воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты.
Изучение математики в 6 классе направлено на формирование следующих компетенций:
-
учебно-познавательной; -
ценностно-ориентационной; -
рефлексивной; -
коммуникативной; -
информационной; -
социально-трудовой.
Математическое образование в школе строится с учетом принципов непрерывности (изучение математики на протяжении всех лет обучения в школе), преемственности (учет положительного опыта, накопленного в отечественном и за рубежном математическом образовании), вариативности (возможность реализации одного и того же содержания на базе различных научно-методических подходов), дифференциации (возможность для учащихся получать математическую подготовку разного уровня в соответствии с их индивидуальными особенностями).
Планируется использование таких педагогических технологий в преподавании предмета, как дифференцированное обучение, КСО, проблемное обучение, ЛОО, технология развивающего обучения, тестирование, технология критического мышления, ИКТ. Использование этих технологий позволит более точно реализовать потребности учащихся в математическом образовании и поможет подготовить учащихся к государственной итоговой аттестации.
Личностные, метапредметные и предметные результаты освоения содержания курса.
К важнейшим результатам обучения математике в 5—6 классах относятся следующие:
• в личностном направлении:
1) знакомство с фактами, иллюстрирующими важные этапы развития математики (изобретение десятичной нумерации, обыкновенных дробей, десятичных дробей; происхождение геометрии из практических потребностей людей);
2) способность к эмоциональному восприятию математических объектов, рассуждений, решений задач, рассматриваемых проблем;
3) умение строить речевые конструкции (устные и письменные) с использованием изученной терминологии и символики, понимать смысл поставленной задачи, осуществлять перевод с естественного языка на математический и наоборот;
• в метапредметном направлении:
1) умение планировать свою деятельность при решении учебных математических задач, видеть различные стратегии решения задач, осознанно выбирать способ решения;
2) умение работать с учебным математическим текстом (находить ответы на поставленные вопросы, выделять смысловые фрагменты и пр.);
3) умение проводить несложные доказательные рассуждения, опираясь на изученные определения, свойства, признаки; распознавать верные и неверные утверждения; иллюстрировать примерами изученные понятия и факты; опровергать с помощью контрпримеров неверные утверждения;
4) умение действовать в соответствии с предложенным алгоритмом, составлять несложные алгоритмы вычислений и построений;
5) применение приёмов самоконтроля при решении учебных задач;
6) умение видеть математическую задачу в несложных практических ситуациях;
• в предметном направлении:
1) владение базовым понятийным аппаратом по основным разделам содержания;
2) владение навыками вычислений с натуральными числами, обыкновенными и десятичными дробями, положительными и отрицательными числами;
3) умение решать текстовые задачи арифметическим способом, используя различные стратегии и способы рассуждения;
4) усвоение на наглядном уровне знаний о свойствах плоских и пространственных фигур; приобретение навыков их изображения; умение использовать геометрический язык для описания предметов окружающего мира;
5) приобретение опыта измерения длин отрезков, величин углов, вычисления площадей и объёмов; понимание идеи измерения длин, площадей, объёмов;
6) знакомство с идеями равенства фигур, симметрии; умение распознавать и