Файл: 1 Классификация и физический механизм работы вч и свч генераторов.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.01.2024
Просмотров: 961
Скачиваний: 1
СОДЕРЖАНИЕ
Узкополосные согласующие цепи связи
Возбудители косвенного синтеза
Однополосная модуляция. Балансные модуляторы. Фильтры в однополосной аппаратуре.
Аналитическое сравнение ФМ и ЧМ.
Фазовая модуляция. Способы осуществления
Сигналы ЧМн формируются в возбудителе при скоростях передачи не более 1000 Бод.
Квадратурное представление сигнала
Радиоприемные и радиопередающие устройства
Раздел 1. Ведение. Принципы работы и классификация рПрУ
Принцип построения приемника прямого усиления
Принцип построения супергетеродинного приемника
Проблема дополнительных каналов приема в супергетеродине
Приемники прямого преобразования (с преобразованием на нулевую пч)
Приемники с цифровой обработкой сигнала
Пример. Радиовещательный приемник св диапазона
Пример. Приемник мобильной станции gsm 900
Ключевые режимы генератора с внешним возбуждением
Варакторные умножители частоты
Общие принципы построения схем
Схемы анодной цепи генератора.
Схемы питания цепей накала мощных генераторных ламп
Схема генератора с общей сеткой
Совместная работа генераторных ламп на общую нагрузку
Схемы широкодиапазонных генераторов
Схемы узкополосных генераторов
Синфазные мостовые схемы сложения мощностей
Амплитудные условия в автогенераторе
Стабильность частоты автогенератора
Схемы автогенераторов с колебательными контурами
Схемы кварцевых автогенераторов
Компенсационный метод синтеза частот
Применение автоподстройки частоты в
Устойчивость работы генератора с внешним возбуждением
Паразитные колебания в генераторе
Общие сведения об амплитудной модуляции
Коллекторная амплитудная модуляция
Усиление модулированных колебаний
Общие сведения об однополосной модуляции
Способ многократной балансной модуляции
Общие сведения об угловой модуляции
Спектр сигнала с угловой модуляцией
Причем >> , следовательно
(3.42)
Рисунок 3.17 – Частотные характеристики
биполярного транзистора
Диапазон рабочих частот транзистора условно разбивают на три зоны
0 < ω < 0,3 - низкие частоты, где | β | βо;
0,3 < ω < 3 - средние частоты, где
(3.43)
3 < ω < - высокие частоты, где
(3.44)
Заметим, что использование транзисторов в номинальном режиме на частотах ниже (1.. 3) обычно не рекомендуется [1], т.к. вследствие слабого влияния емкости коллекторного перехода, пикфактор коллекторного напряжения может достигать 3..4-х кратной величины по отношению к напряжению коллекторного питания. Заводы изготовители для мощных высокочастотных транзисторов оговаривают запрет на их использование на частотах ниже fн,которая, как правило, выше fβ=ωβ/2π. В связи с этим, в дальнейшем будем использовать для βвыражение (3.44).
Чтобы выяснить характер процессов во входной цепи транзистора, схема которой приведена на рисунке 3.18а, воспользуемся упрощенной эквивалентной схемой транзистора 3.18б, в которой не учитываются индуктивности выводов базы и эмиттера, активные сопротивления эмиттерно-базового перехода, а также емкость коллекторного перехода. Эти параметры определяют количественные показатели входной цепи и мало влияют на качественный характер процессов.
В результате такого упрощения, входная цепь транзистора может быть представлена двумя схемами, соответствующим закрытому (рис.3.18в) и открытому (рис.3.18г) эмиттерно-базовому переходу. В схему также введены источник возбуждения иГ с внутренним сопротивлением RГ и резистор RБ. Предполагается также, что EБ = 0.
Рисунок 3.18 – Эквивалентные схемы входной
цепи транзистора
В схемах рисунок 3.18в,г учитывается, что
СБ << CД, RБ >> rβ и RБ>> 1/ωСБ. Для эквивалентной схемы рис.3.18в (закрытое состояние перехода) напряжение на переходе еБ определяется выражением
Яндекс.ДиректКольпоскопы «Алайф-Дафина»Варианты для любого бюджета.Доставка по всей РФ.В наличии на складе. СервисУзнать большеbstmed.ruЕсть противопоказания. Посоветуйтесь с врачом.Скрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента
Спасибо, объявление скрыто. |
АВР для генератораОптом и в розницу. Доставка, самовывоз. 2 мин. от м. Водный стадионУзнать большеalektrion.ruСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента
Спасибо, объявление скрыто. |
Дизельный генератор от завода!Низкие цены производителя! Закажите дизельные генераторы в AZIMUT!Узнать большеgc-azimut.ruСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента
Спасибо, объявление скрыто. |
Генераторы сигналов KeysightРеволюционная технология Trueform. Гарантия 3 года. В наличии на складе в Москве.Узнать большеeriscom.ruСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента
Спасибо, объявление скрыто. |
(3.45)
где φи – фазовый сдвиг между напряжением генератора иГ и напряжением на переходе еБ.
Аналогичное выражение может быть получено для рис. 3.18г (открытое состояние перехода)
(3.46)
Поскольку СБ << CД,
Характер процессов в цепи базы иллюстрируется рисунком 3.19.
Пока переход закрыт, напряжение на базе изменяется согласно (3.45).
В точке (1), соответствующей напряжению отсечки ЕБ0, переход открывается. Поскольку открытому переходу соответствует эквивалентная схема рис. 3.18г и напряжение на переходе должно соответствовать (3.46), с момента отпирания перехода происходит плавное перемещение напряжения на базе
еБ с графика на график и изменение по этому графику до точки (2), когда переход снова закрывается. В этот момент, вследствие малой постоянной времени закрытого перехода, происходит резкое перемещение на график
Рисунок 3.19 – Волновая диаграмма эквивалентной схемы
биполярного транзистора
Форма импульса коллекторного тока определяется формой напряжения на базе в интервале времени (1-2). Ток базы также существует на интервале (1-2). Вследствие емкостного характера сопротивления перехода, ток базы опережает напряжение на базе (φ), поэтому, изменяясь по гармоническому закону, в момент соответствующий точке (4), он меняет направление.
Приведенные соображения подтверждаются результатами математического моделирования с учетом реальных параметров транзистора. Волновые диаграммы, полученные при этом, представлены на рисунке 3.20.
Рисунок 3.20 – Волновая диаграмма биполярного транзистора
по результатам математического моделирования
Для расчета входной цепи необходимо определить ток базы через параметры выходной цепи. Согласно (3.40) и (3.44).
(3.46)
Аналогичное выражение (с небольшой погрешностью) может быть записано для амплитуды образующей косинусоиды тока базы и тока коллектора
(3.47)
Учитывая знакопеременный характер тока базы, в первом приближении, можно считать амплитуду образующей косинусоиды – первой гармоникой тока базы .
Однако полученные выражения не учитывают реакцию коллекторной цепи через емкость СК (см. рисунок 3.21), которая определяется током
Рисунок 3.21 – Схема реакции коллекторной цепи
С учетом этой реакции
Поскольку UK >> UБи учитывая, что UK = IK1·RK
, получим
Для расчета входной мощности, коэффициента усиления и элементов межкаскадной связи необходимо определить полное входное сопротивление транзистора
Zвх = rвх+jxвх
При этом недостаточно принятых ранее упрощений. Необходимо учесть индуктивности и активные сопротивления выводов транзистора. Однако это выходит за рамки настоящего пособия. Соответствующие выкладки и расчетные соотношения можно найти в [ ]. Входная мощность и коэффициент усиления генератора рассчитываются следующим образом
Рвх=0,5· ·rвх; Кр=Р1/Pвх
Входная мощность рассеивается в кристалле транзистора, поэтому при расчете теплового режима транзистора входная мощность должна суммироваться с мощностью потерь в коллекторной цепи.
Асимметрия импульса коллекторного тока не позволяет использовать рассмотренную выше обобщенную методику расчета выходной цепи АЭ.
Кроме того, асимметрия импульса при усилении модулированных по амплитуде колебаний приводит к паразитной фазовой модуляции из-за смещения положения максимума тока. В результате расширяется полоса частот, занимаемая сигналом.
На практике стремятся обеспечить симметрию импульса коллекторного тока подбором RБ так, чтобы постоянная времени входной цепи закрытого и открытого перехода оставалась неизменной. При этом удается обеспечить форму импульса близкую к симметричной. В соответствии с рисунком 18б, для этого необходимо выполнить условие
Отсюда можно определить величину и RБ
Изолированным затвором
Эквивалентная схема полевого транзистора (ПТ) представлена на рисунке 3.22.
Рисунок 3.22 – Эквивалентная схема ПТ
Схема входной цепи генератора на полевом транзисторе представлена на рисунке 3.23а. Полная эквивалентная схема генератора на ПТ без учета индуктивности и сопротивления выводов приведена на рисунке 3.23б
Для амплитуды возбуждения, по аналогии с (3.21), можно записать
Однако в нагрузку попадает лишь часть тока ic
Рисунок 3.23 – Эквивалентные схемы генератора на ПТ
Поскольку выходная мощность определяется током в нагрузке iн
(3.48)
Напряжение смещения определяется аналогично выражению (3.73) по заданному углу отсечки
Входной ток IБ1 рассчитаем в предположении, что
тогда согласно рисунку 3.23б
(3.49)
где ΔIН1 - учитывает реакцию стоковой цепи
(3.50)
Подставляя (3.48) и (3.50) в (3.49), получим (полагая UН >> UЗ)
(3.51)
Согласно (3.51) фазовый сдвиг между входным током и напряжением составляет , т.е. входное сопротивление генератора чисто реактивное. Однако это результат сделанных нами упрощений. В действительности, с учетом индуктивности и активного сопротивления выводов, а также конечного значения сопротивления RЗИ, входное сопротивление будет иметь резистивную составляющую Zвх = rвх +jxвх;соответственно входную мощность можно определить следующим образом
Нагрузочные характеристики генератора
С внешним возбуждением
Нагрузочные характеристики генератора представляют собой зависимости параметров режима генератора от эквивалентного сопротивления нагрузки