Файл: 1 Классификация и физический механизм работы вч и свч генераторов.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.01.2024
Просмотров: 894
Скачиваний: 1
СОДЕРЖАНИЕ
Узкополосные согласующие цепи связи
Возбудители косвенного синтеза
Однополосная модуляция. Балансные модуляторы. Фильтры в однополосной аппаратуре.
Аналитическое сравнение ФМ и ЧМ.
Фазовая модуляция. Способы осуществления
Сигналы ЧМн формируются в возбудителе при скоростях передачи не более 1000 Бод.
Квадратурное представление сигнала
Радиоприемные и радиопередающие устройства
Раздел 1. Ведение. Принципы работы и классификация рПрУ
Принцип построения приемника прямого усиления
Принцип построения супергетеродинного приемника
Проблема дополнительных каналов приема в супергетеродине
Приемники прямого преобразования (с преобразованием на нулевую пч)
Приемники с цифровой обработкой сигнала
Пример. Радиовещательный приемник св диапазона
Пример. Приемник мобильной станции gsm 900
Ключевые режимы генератора с внешним возбуждением
Варакторные умножители частоты
Общие принципы построения схем
Схемы анодной цепи генератора.
Схемы питания цепей накала мощных генераторных ламп
Схема генератора с общей сеткой
Совместная работа генераторных ламп на общую нагрузку
Схемы широкодиапазонных генераторов
Схемы узкополосных генераторов
Синфазные мостовые схемы сложения мощностей
Амплитудные условия в автогенераторе
Стабильность частоты автогенератора
Схемы автогенераторов с колебательными контурами
Схемы кварцевых автогенераторов
Компенсационный метод синтеза частот
Применение автоподстройки частоты в
Устойчивость работы генератора с внешним возбуждением
Паразитные колебания в генераторе
Общие сведения об амплитудной модуляции
Коллекторная амплитудная модуляция
Усиление модулированных колебаний
Общие сведения об однополосной модуляции
Способ многократной балансной модуляции
Общие сведения об угловой модуляции
Спектр сигнала с угловой модуляцией
uО(t)=UΩ(t)cos[ωt+ φ(t)] (8.4)
Сравнивая (8.1) с (8.4), можно сделать вывод, что верхняя боковая полоса представляет собой, перенесённый на частоту несущей (ω), исходный информационный сигнал.
Согласно (8.4) однополосный сигнал, в общем случае, представляет собой колебание модулированное по амплитуде и фазе. Для приёма такого сигнала необходим специальный приёмник, т.к. амплитуда однополосного сигнала не повторяет информационный сигнал uΩ(t), а лишь отражает его амплитуду UΩ(t) (громкость).
Сравним АМ и ОПМ по величине необходимой мощности передатчика, при условии, что приёмники имеют идентичные параметры, и уровни принятых сигналов равны. Согласно (7.6) пиковая мощность АМ передатчика при m = 1 равна Р1макс(АМ) = 4Р1Т , а амплитуда принятого информационного сигнала пропорциональна сумме амплитуд боковых частот
UΩП=G·mU=GU. (8.5)
Для того, чтобы при однополосной модуляции выполнялось условие (8.5), необходимо увеличить амплитуду боковой частоты вдвое по сравнению с боковыми при АМ . В этом случае для m = 1, максимальная мощность однополосного передатчика Р1макс(ОПМ) = Р1Т.
Итак, переход на однополосную работу позволяет, при одном и том же качестве радиосвязи, уменьшить пиковую мощность передатчика в 4 раза. Это достоинство ОПМ реализуется при любых условиях распространения радио волн. Если же сигнал на входе приёмника поражен шумами, то переход на однополосную работу позволяет в два раза сократить полосу приёмника и соответственно уменьшить мощность принимаемых шумов. При этом вдвое увеличится отношение сигнал/шум по мощности, что равносильно увеличению мощности передатчика в два раза. Таким образом, при одинаковом качестве принимаемых сигналов пиковая мощность однополосного передатчика может быть в 8 раз меньше мощности АМ передатчика.
При наличии селективных замираний, которые приводят к перекосу спектра АМ сигнала и нелинейным искажениям передаваемого сообщения, сокращение полосы однополосного сигнала существенно снижает вероятность искажений такого вида. Практика использования ОПМ показала, что эта особенность также эквивалентна увеличению мощности передатчика в два раза. Таким образом, переход на однополосную работу, в случае неблагоприятных условий распространения сигналов, может дать 16 – кратный выигрыш по мощности передатчика.
Яндекс.ДиректПреобразователь частоты ONI M680Широкий ассортимент надежных моделей для насосного оборудования. От 0,75 кВУзнать большеoni-system.comСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента
Спасибо, объявление скрыто. |
Шлюз SMG-1016M. VoIP Оптовые цены!в Екатеринбурге! Шлюз SMG-1016M в наличии на складе. ELTEX. Заходите!Узнать большеeltexcm.ruСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента
Спасибо, объявление скрыто. |
Внести специалистов в НРСВнести специалистов в НРС. Гарантии в договоре. Официально. Заходите на сайт.Узнать больше1plc.ruСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента
Спасибо, объявление скрыто. |
Генератор вч сигналов1, 2 канала. ГосРеестр. USB, LAN, RS-232. Звоните или покупайте онлайн!Узнать большеeliks.ruСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента
Спасибо, объявление скрыто. |
Сокращение полосы сигнала при ОПМ позволяет увеличить объем передаваемой информации за счёт размещения второго однополосного канала в пределах прежней полосы, либо увеличить скорость передачи информации, используя всю полосу, занимаемую АМ сигналом.
Следует отметить и ещё одну особенность ОПМ. Поскольку однополосный сигнал формируется в возбудителе, передатчик с ОПМ работает как усилитель модулированных колебаний в ННР. На рисунке 8.1 представлены статические модуляционные характеристики (СМХ) усилителя для потребляемого тока и к.п.д.. При передаче звуковых сигналовмаксимальные уровни модуляции встречаются достаточно редко. В среднем коэффициент модуляции т составляет 30 – 50 %. Поэтому основная рабочая область СМХ при АМ сосредоточена вблизи режима несущей (телефонной точки). При ОПМ, в режиме молчания, передатчик практически запирается, поэтому рабочая область статических модуляционных характеристиках смещается к началу координат (см. выделенные области на рисунке 8.1).
Рисунок 8.1 – Статические модуляционные характеристики
В результате мощность, потребляемая усилителем при ОПМ, существенно уменьшается.
К числу недостатков ОПМ следует отнести
· Необходимость специального однополосного приёмника, в котором для извлечения информации приходится восстанавливать несущую частоту. Для упрощения приёмника информацию о несущей частоте передают пилот-сигналом, который обычно представляет собой ослабленную до 3 ÷ 70% несущую в зависимости от условий распространения сигнала. В приёмнике пилот-сигнал используется для синхронизации внутреннего гетеродина.
· Высокие требования к линейности усилительного тракта при многоканальной работе. Нелинейность усилителя приводит к расширению спектра сигнала и возникновению переходной помехи из канала в канал.
· Низкий к.п.д. усилителя в рабочей области СМХ (см. рисунок 8.1).
Способ многократной балансной модуляции
⇐ Предыдущая37383940414243444546Следующая ⇒
| |
Как правило, однополосный сигнал формируется из сигнала с амплитудной модуляцией. Для этого необходимо подавить несущее колебание и нерабочую боковую полосу частот.
Подавление несущего колебания осуществляется с помощью балансного амплитудного модулятора. Чтобы объяснить, как это происходит, рассмотрим форму АМ сигнала с подавленной несущей. На основании (7.4), колебание двухполосного сигнала без несущей имеет вид
u(t)= U·mcosΩt·cosωt (8.6)
Рисунок 8.2 иллюстрирует выражение (8.6). Частота огибающей этого колебания в два раза выше частоты модулирующего сигнала.
Рисунок 8.2 – Двухполосный сигнал
Схема балансного модулятора и диаграмма, поясняющая его работу, представлены на рисунке 8.3. Для нормальной работы балансного модулятора напряжение несущего колебания должно быть значительно больше модулирующего напряжения
U >>UΩ (8.7)
При этом условии коммутация диодов осуществляется напряжением несущей. В случае полярности напряжения U, показанной на рисунке 8.3, открываются параллельные диоды, и напряжение модулирующего сигнала проходит непосредственно на выход модулятора. После смены знака напряжения U, параллельные диоды запираются и открываются диагональные. В результате модулирующее напряжение проходит на выход, также меняя знак. Выходное напряжение балансного модулятора аналогично двухполосному сигналу, но имеет форму меандра. Поскольку за балансным модулято-
ром включается полосовой фильтр для подавления нерабочей боковой полосы, высшие гармоники прямоугольных импульсов подавляются и однополосный сигнал после фильтра будет иметь гармоническую форму.
Рисунок 8.3 – Балансный модулятор
Отсутствие несущего колебания на выходе балансного модулятора обусловлено взаимной компенсацией магнитных полей, созданных токами несущей частоты в первичной обмотке выходного трансформатора. При этом степень подавления несущего колебания в значительной мере зависит от идентичности параметров диодов. В связи с этим, в балансных модуляторах целесообразно использовать интегральные микросборки диодов, или выполнять балансный модулятор полностью в интегральном исполнении.
В современной однополосной аппаратуре нерабочая боковая полоса должна быть подавлена до уровня - 60дБ по отношению к рабочей полосе.
Добиться этого очень не просто, т.к. интервал частот между боковыми полосами определяется величиной минимальной частоты (Fмин ) модулирующего сигнала, и составляет 2Fмин . Например, для стандартного телефонного сигнала с полосой 300 ÷ 3400Гц , расстояние между боковыми полосами составит 600Гц. Для обеспечения требуемого затухания фильтра в 60 дБ на несущей частоте 1МГц от фильтра потребуется крутизна кривой затухания не менее 0,1 дБ/Гц. Подобные характеристики способны обеспечить только кварцевые и электромеханические фильтры. Однако такие фильтры невозможно сделать перестраиваемыми, поэтому однополосный сигнал формируется только на фиксированной поднесущей частоте (ω1), обычно не превышающей 0,5 ÷ 1МГц.
Для переноса однополосного сигнала в рабочий диапазон используется повторная балансная модуляция второй поднесущей частоты (ω2) однополосным сигналом, как показано на рисунке 8.4. Поскольку интервал частот между двумя боковыми после повторной модуляции равен ≈ 2ω1, в качестве полосового фильтра (ПФ2) можно использовать обычный контур. Выходную частоту однополосного сигнала теперь можно менять, используя в качестве генератора G2 перестраиваемый синтезатор частоты. Одновременно с синтезатором перестраивается и фильтр ПФ2. Фиксированную частоту ω1 также получают от этого синтезатора.
Спектральная картина формирования однополосного сигнала представлена на рисунке 8.4б. Описанный способ в литературе получил название фильтрового способа, или способа многократной балансной модуляции.
Рисунок 8.4 – Фильтровый способ формирования однополосного сигнала
Если при повторном преобразовании не удаётся получить эффективное подавление нерабочей полосы, частоту ω2 фиксируют при значении, обеспечивающем требуемое подавление, а на рабочую частоту однополосный сигнал переносится третьим преобразованием.
Фильтровый способ позволяет осуществлять многоканальную передачу сигналов. На рисунке 8.5 представлен вариант 4-х канальной передачи [9].