Файл: 1 Классификация и физический механизм работы вч и свч генераторов.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.01.2024
Просмотров: 946
Скачиваний: 1
СОДЕРЖАНИЕ
Узкополосные согласующие цепи связи
Возбудители косвенного синтеза
Однополосная модуляция. Балансные модуляторы. Фильтры в однополосной аппаратуре.
Аналитическое сравнение ФМ и ЧМ.
Фазовая модуляция. Способы осуществления
Сигналы ЧМн формируются в возбудителе при скоростях передачи не более 1000 Бод.
Квадратурное представление сигнала
Радиоприемные и радиопередающие устройства
Раздел 1. Ведение. Принципы работы и классификация рПрУ
Принцип построения приемника прямого усиления
Принцип построения супергетеродинного приемника
Проблема дополнительных каналов приема в супергетеродине
Приемники прямого преобразования (с преобразованием на нулевую пч)
Приемники с цифровой обработкой сигнала
Пример. Радиовещательный приемник св диапазона
Пример. Приемник мобильной станции gsm 900
Ключевые режимы генератора с внешним возбуждением
Варакторные умножители частоты
Общие принципы построения схем
Схемы анодной цепи генератора.
Схемы питания цепей накала мощных генераторных ламп
Схема генератора с общей сеткой
Совместная работа генераторных ламп на общую нагрузку
Схемы широкодиапазонных генераторов
Схемы узкополосных генераторов
Синфазные мостовые схемы сложения мощностей
Амплитудные условия в автогенераторе
Стабильность частоты автогенератора
Схемы автогенераторов с колебательными контурами
Схемы кварцевых автогенераторов
Компенсационный метод синтеза частот
Применение автоподстройки частоты в
Устойчивость работы генератора с внешним возбуждением
Паразитные колебания в генераторе
Общие сведения об амплитудной модуляции
Коллекторная амплитудная модуляция
Усиление модулированных колебаний
Общие сведения об однополосной модуляции
Способ многократной балансной модуляции
Общие сведения об угловой модуляции
Спектр сигнала с угловой модуляцией
Спасибо, объявление скрыто. |
Преобразователь частоты ONI M680Широкий ассортимент надежных моделей для насосного оборудования. От 0,75 кВoni-system.com Скрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента
Спасибо, объявление скрыто. |
Для оценки энергетических показателей генератора необходимо определить постоянную составляющую и первую гармонику коллекторного тока. Для этого воспользуемся полученными ранее формулами гармонического анализа
Здесь θ=π/2; iк = iкмакс ............. –θ < ωt < θ
iк = 0..................... –θ > ωt > θ
Рисунок 3.35 – Волновая диаграмма генератора
В результате вычисления интегралов получим
Iко = 0,5·iкмакс
Аналогично для первой гармоники меандра напряжения получим
С другой стороны
Приравнивая правые части последних выражений, получим
Ек = 2iкмакс(Rн+rнас)
Мощность, потребляемая генератором
Ро = Ек·Iко =iк2макс(Rн+rнас)
Колебательная мощность генератора
К.П.Д. генератора
Как и в случае последовательного резонансного инвертора при расчете полного к.п.д. генератора следует учитывать коммутационные потери обусловленные паразитными емкостями схемы (см. 3.52 и 3.53)
Следует также отметить, что дополнительные коммутационные потери возникают и при переключении тока за счет паразитной индуктивностей выводов и соединительных проводов (
LП). Действительно, пока через АЭ протекает ток iкмакс , паразитные индуктивности накапливают энергию
w = .
При запирании АЭцепь индуктивности обрывается и возникающая э.д.с. самоиндукции рассеивает накопленную энергию на сопротивлении утечки АЭ.
Мощность коммутационных потерь определится выражением
= f
Однако с этими потерями приходится считаться только при использовании сильноточных и низковольтных АЭ.
1.14.3. Генератор в режиме класса «Е»
Как было установлено выше, скачкообразный характер изменения формы тока и напряжения приводит к ограничению частотного диапазона эффективных режимов генератора. В определенной мере этого недостатка нет в другом ключевом режиме, получившем условное название режим класса «Е».
Упрощенная схема такого генератора и его эквивалентная схема представлены на рисунке 3.36.
Рисунок 3.36 – Схема генератора в режиме класса «Е»
Контур LкCк– настроен в резонанс на частоту возбуждения и имеет достаточно высокую добротность для фильтрации высших гармоник.
Контур L(C1+Co)– «формирующий»; его назначение – реализация оптимальной формы коллекторного напряжения, обеспечивающего минимальные коммутационные потери.
Генератор работает следующим образом. При отпирании транзистора в формирующем контуре L1,С2 возникает переходный процесс; частота и затухание контура подбираются так, чтобы к моменту следующего отпирания транзистора напряжение на коллекторе и его производная оказались равными 0. Это позволяет избавиться от коммутационных потерь за счет паразитных емкостей транзистора и схемы. Такой режим получил название оптимального. Длительность времени насыщения (τнас) транзистора может быть больше, меньше или равной половине периода рабочей частоты генератора. В зависимости от этого подбирается резонансная частота формирующего контура и его добротность, определяющая степень затухания переходного процесса. Поскольку затухание должно быть значительным, добротность формирующего контура не превышает 1,5-2. Волновая диаграмма коллекторного напряжения и тока для генератора в режиме класса «Е» представлена на рисунке 3.37. Резонансная частота формирующего контура при τнас< Т/2должна быть ниже рабочей частоты, а при τнас
≥ Т/2-выше. Расчеты показывают, что наилучшие результаты с точки зрения эффективности генератора обеспечивает режим с τнас ≈ Т/2 [ 2 ].
В момент запирания АЭ ток коллектора становится равным 0. Однако ток в формирующем контуре не обрывается, а замыкается через емкость контура (ic)
Несмотря на лучшие частотные свойства режим класса «Е» не нашел широкого применения, т.к. при закрытом транзисторе пиковое напряжение на коллекторе может в несколько раз превышать напряжение источника питания. В оптимальном режиме при τнас ≈ Т/2 пиковое напряжение в 3,7 раза превышает Ек.
Рисунок 3.37 – Волновая диаграмма генератора класса «Е»
При использовании транзистора в таком генераторе резко возрастает опасность электрического пробоя, особенно в процессе настройки, когда режим отличается от оптимального и пиковое напряжение может быть значительно больше 3,7Ек. Более подходящим прибором для генератора класса «Е» является генераторная лампа, т.к. она способна выдержать многократные импульсные перегрузки по напряжению. Однако и в этом случае надежность генератора оказывается невысокой из-за большой вероятности электрического пробоя.
Вследствие низкой добротности формирующего контура, форма напряжения на нагрузке далека от гармонической, поэтому в схему ГВВ добавляется фильтрующий контур, имеющий высокую добротность и настроенный на рабочую частоту. Амплитудно–частотные характеристики формирующего (1) и фильтрующего (2) контуров показаны на рисунке 3.38.
С ростом рабочей частоты генератора емкость формирующего контура необходимо уменьшать. Как только необходимая емкость контура станет меньше паразитной емкости схемы, обеспечение оптимального режима становится невозможным и к.п.д. генератора начнет быстро падать.
Рисунок 3.38 – Амплитудно-частотные характеристики
В заключение следует заметить, что приведенные сведения не исчерпывают все схемы и методы повышения эффективности ГВВ. Более подробно этот материал излагается в [ 2 , 3] .
Умножители частоты
Умножители частоты, как и усилители мощности колебаний высокой частоты, относятся к подклассу генераторов с внешним возбуждением. От усилителей мощности они отличаются тем, что частота колебаний выходного сигнала в кратное число раз отличается от частоты возбуждения.
Основные области применения умножителей частоты (УЧ):
- Расширение диапазона частот возбудителя.
Предположим , что исходный диапазон частот возбудителя f … 2f. Применение удвоителя частоты позволит получить частоты 2f …4f. В результате общий диапазон частот возбудителя составит f … 4f.
- Углубление частотной модуляции (ЧМ)
При умножении частоты ЧМ колебаний пропорционально увеличивается и отклонение частоты (девиация).
- Перенос низкочастотных колебаний, стабилизированных кварцем, в более высокочастотный диапазон.
- В выходных каскадах транзисторных передатчиков диапазона сверхвысоких частот, где транзисторы утрачивают свои усилительные свойства.
Варакторные умножители частоты
⇐ Предыдущая11121314151617181920Следующая ⇒
|
Яндекс.Директ |
Эквивалентная схема варикапа представлена на рисунке 3.40. Здесь L – индуктивность выводов диода; RS - сопротивление материала кристалла и контактов; Rу– сопротивление утечки; СБ– барьерная емкость перехода; Rр – сопротивление рекомбинации (активная составляющая сопротивления открытого перехода); СП