Файл: 1 Классификация и физический механизм работы вч и свч генераторов.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.01.2024
Просмотров: 951
Скачиваний: 1
СОДЕРЖАНИЕ
Узкополосные согласующие цепи связи
Возбудители косвенного синтеза
Однополосная модуляция. Балансные модуляторы. Фильтры в однополосной аппаратуре.
Аналитическое сравнение ФМ и ЧМ.
Фазовая модуляция. Способы осуществления
Сигналы ЧМн формируются в возбудителе при скоростях передачи не более 1000 Бод.
Квадратурное представление сигнала
Радиоприемные и радиопередающие устройства
Раздел 1. Ведение. Принципы работы и классификация рПрУ
Принцип построения приемника прямого усиления
Принцип построения супергетеродинного приемника
Проблема дополнительных каналов приема в супергетеродине
Приемники прямого преобразования (с преобразованием на нулевую пч)
Приемники с цифровой обработкой сигнала
Пример. Радиовещательный приемник св диапазона
Пример. Приемник мобильной станции gsm 900
Ключевые режимы генератора с внешним возбуждением
Варакторные умножители частоты
Общие принципы построения схем
Схемы анодной цепи генератора.
Схемы питания цепей накала мощных генераторных ламп
Схема генератора с общей сеткой
Совместная работа генераторных ламп на общую нагрузку
Схемы широкодиапазонных генераторов
Схемы узкополосных генераторов
Синфазные мостовые схемы сложения мощностей
Амплитудные условия в автогенераторе
Стабильность частоты автогенератора
Схемы автогенераторов с колебательными контурами
Схемы кварцевых автогенераторов
Компенсационный метод синтеза частот
Применение автоподстройки частоты в
Устойчивость работы генератора с внешним возбуждением
Паразитные колебания в генераторе
Общие сведения об амплитудной модуляции
Коллекторная амплитудная модуляция
Усиление модулированных колебаний
Общие сведения об однополосной модуляции
Способ многократной балансной модуляции
Общие сведения об угловой модуляции
Спектр сигнала с угловой модуляцией
Предположим теперь, что при частотной модуляции на нижней частоте Ω1 индекс модуляции такой же, как при ФМ. Тогда на верхней частоте, согласно (9.11), индекс модуляции будет во много раз меньше, и, следовательно, эффективная полоса, при частоте модуляции Ω2, значительно сократится. Спектр сигнала с ЧМ для этого случая представлен на рисунке 9.4б.
Таким образом, при частотной модуляции реальным многочастотным сигналом, полоса модулированного сигнала (Пчм) оказывается значительно уже, по сравнению с полосой сигнала при фазовой модуляцией (Пфм). По этой причине, для целей радиосвязи и радиовещания предпочтение отдаётся частотной модуляции.
Рисунок 9.4 – Спектры сигналов с ФМ и ЧМ
Методы получения частотной модуляции
⇐ Предыдущая40414243444546474849Следующая ⇒
| |
Колебания с частотной модуляцией можно получить, либо непосредственно, изменяя частоту колебаний автогенератора, либо путём преобразования фазовой модуляции в частотную. Метод непосредственного изменения частоты получил название «прямого» метода ЧМ, соответственно преобразование ФМ в ЧМ называют «косвенным» методом.
Прямые методы ЧМ основаны на изменении реактивности колебательной системы автогенератора под воздействием модулирующего сигнала.
При косвенных методах фазовую модуляцию получают при прохождении несущего колебания через цепь, сдвиг фазы в которой зависит от модулирующего сигнала. Преобразование ФМ в ЧМ обеспечивается коррекцией модулирующего сигнала интегрирующей RC – цепью (см. п.п. 9.1).
9.3.1 Прямые методы ЧМ
Для изменения частоты автогенератора в его колебательную систему включается управляемая реактивность. В качестве такой реактивности в настоящее время, как правило, используются ёмкость запертого p-n перехода специального полупроводникового диода – варикапа. В первом приближении ёмкость перехода может быть описана следующим выражением
(9.15)
Здесь е -запирающее напряжение на варикапе; Со – ёмкость варикапа при е = 0; φк = 0,3 ÷ 0,5 В - контактная разность потенциалов; n - показатель «резкости» перехода, который может принимать значения от 0,3 до 3.
Значение n = 0,3 соответствует «плавному» переходу; n = 0,5 – «резкому»; n ≥ 1 – «сверх резкому» переходу. Графики, соответствующие (9.15) приведены на рисунке 9.5б.
Схема автогенератора с частотной модуляцией (без цепей питания) представлена на рисунке 9.5а
Рисунок 9.5 - Схема ЧМ автогенератора с варикапом
Обычно ёмкости схемы автогенератора подбираются так, чтобы
С3<
(9.16)
Совершенно очевидно, что пропорциональная зависимость между резонансной частотой контура ωο и напряжением на переходе е (а значит и частотой генерируемых колебаний ω) возможна только при n = 2.
В процессе модуляции
е= Ес+иΩ(t)+ u(t)= Ес+UΩ cosΩt + U cosωt (9.17)
Здесь Ес – напряжение смещения на варикапе; иΩ(t)- модулирующий сигнал; u(t)- колебания высокой частоты, поступающие на варикап со стороны автогенератора.
Поскольку переход должен быть в закрытом состоянии (e<0), необходимо выполнить условие
UΩ + U ≤ |Ec| (9.18)
Полагая в (9.16) n=2, с учётом (9.17),для частоты генерируемых колебаний получим
(9.19)
Таким образом, для линейной частотной модуляции желательно иметь варикап со сверх резким переходом. На практике промышленные образцы
варикапов обычно имеют резкие переходы с n ≈0,5. Поэтому приходится ограничивать величину девиации частоты. Для получения необходимой девиации, первичную модуляцию осуществляют на пониженной частоте, а затем с помощью умножителя переносят ЧМ колебание на рабочую частоту. При этом девиация частоты увеличивается в соответствии с кратностью умножения.
Яндекс.ДиректМедлицензирование!Помощь в получении лицензии на медицинскую деятельность. Гарантия 100%!Узнать большеmed-abc.ruСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента
Спасибо, объявление скрыто. |
Медицинская лицензия под ключ!Без посредников! Быстро поможем получить медицинскую лицензию за один визит!медицинская-лицензия-без-посредников.рф Скрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента
Спасибо, объявление скрыто. |
Преобразователь частоты ONI M680Широкий ассортимент надежных моделей для насосного оборудования. От 0,75 кВУзнать большеoni-system.comСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента
Спасибо, объявление скрыто. |
Расчет полупроводниковых системКомпьютерное моделирование p-n переходов, диодов, транзистров в COMSOL.Узнать большеcomsol.ru0+Скрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента
Спасибо, объявление скрыто. |
Меньшие искажения при большей девиации могут быть получены с помощью «реактивного транзистора» (реактивной лампы) [12]. Реактивный транзистор представляет собой, как и варикап, управляемую реактивность (Хр)ёмкостного или индуктивного характера, подключаемую к контуру автогенератора. Схема реактивного транзистора представлена на рисунке 9.6а.
Рисунок 9.6 – Реактивный транзистор
Для того, чтобы выходное сопротивление транзистора было реактивным, необходимо обеспечить фазовый сдвиг 900 между током коллектора и коллекторным напряжением . Поскольку коллекторный ток по фазе совпадает с базовым напряжением, соответствующий фазовый сдвиг должен быть между и . В схеме реактивного транзистора необходимые фазовые сдвиги обеспечиваются с помощью простейшего фазовращателя (Z1,Z2), варианты которого представлены на рисунке 9.6б. Для того, чтобы такой фазовращатель обеспечивал фазовый сдвиг 90
0, необходимо выполнить условие |Z1|>>|Z2|. Тогда для напряжения на базе получим
(9.20)
При работе транзистора с отсечкой коллекторного тока , поэтому с учётом (9.20), получим
(9.21)
В зависимости от вида использованного фазовращателя (рисунок 9.6б), выходное сопротивление реактивного транзистора можно представить следующим образом
На основании полученных результатов можно сделать вывод, что реактивный транзистор имеет индуктивную реакцию, если Z1- индуктивность, или Z2- ёмкость. Ёмкостная реакция реактивного транзистора имеет место, если Z2- индуктивность, или Z1- ёмкость.
Частотная модуляция в автогенераторе может быть получена путём изменения средней крутизны реактивного транзистора при работе с отсечкой коллекторного тока, т.к. в этом случае угол отсечки зависит от смещения на базе, т.е. от модулирующего напряжения е=Ес+uΩ(t).
Основное достоинство прямых методов ЧМ заключается в возможности непосредственного получения больших отклонений частоты. Однако такая возможность приводит к существенной нестабильности средней частоты, которая будет меняться из-за нелинейности характеристики управляющего реактивного элемента (УЭ), а также вследствие нестабильности, или пульсаций, напряжения источников питания и влияния других внешних дестабилизирующих факторов (см. раздел 5.4). Использование ЧМ в кварцевых автогенераторах позволяет отчасти решить эту проблему [12]. Тем не менее, из-за высокой фиксирующей способности кварцевого автогенератора, получить требуемые значения девиации частоты удается далеко не всегда.
Яндекс.ДиректИБП RielloОфициальный дилер. Широкий модельный ряд. Монтаж, ремонт, диагностика.Узнать большеiso-energo.ruСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента
Спасибо, объявление скрыто. |
SMG-1016M. VoIP по оптовым ценамв Екатеринбурге! SMG-1016M в наличии на складе. ELTEX. Заходите!Узнать большеeltexcm.ruСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента
Спасибо, объявление скрыто. |
IP-телефоны Avaya 1140EIT-интегратор: подбор, внедрение, отгрузка за 2 дня, спеццены, доставка по Мск и МОУзнать большеitelon.ruСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента
Спасибо, объявление скрыто. |
Генератор вч сигналов1, 2 канала. ГосРеестр. USB, LAN, RS-232. Звоните или покупайте онлайн!Узнать большеeliks.ruСкрыть рекламу:Не интересуюсь этой темойТовар куплен или услуга найденаНарушает закон или спамМешает просмотру контента
Спасибо, объявление скрыто. |
Проблема стабильности средней частоты решается в схеме, представленной на рисунке 9.7. В этой схеме средняя частота автогенератора (ГПД), с помощью фазовой автоподстройки частоты, приводится к высокостабильной частоте опорного генератора (ОГ).
Рисунок 9.7 – Схема автоматической подстройки частоты.
Делитель частоты в n раз необходим для уменьшения индекса модуляции. Выше было отмечено, что при некоторых значениях индекса модуляции (Ψ) несущая в спектре ЧМ исчезает, В этом случае велика вероятность сбоя в работе автоподстройки и соответственно вероятность скачкообразного изменения частоты ГПД. Чтобы исключить подобную ситуацию, индекс модуляции на входе фазового детектора (ФД) необходимо уменьшить до значения менее первого нуля функции Бесселя Jo (Ψ=2,4). Для надёжной работы системы фазовой автоподстройки (ФАП), уровень несущей должен быть достаточно большим, поэтому n подбирается так, чтобы индекс модуляции на входе ФД не превышал 1.