Добавлен: 10.01.2024
Просмотров: 124
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
по дисциплине: «Основы автоматизации производства»
на тему: «Общие сведения о надежности автоматических систем»
Содержание
Введение…………………………………………………………………………..3
1.Теоретические основы понятия надежности автоматических систем..4
1.1.Понятие и сущность надежности автоматических систем………………..4
1.2. Показатели надежности систем…………………………………………..13
2.Практические примеры надежности автоматических систем…………21
2.1. Общая характеристика условий работы автоматических систем………..21
2.2.Методы повышения надежности автоматических систем………………..26
Заключение……………………………………………………………………34
Список литературы……………………………………………………………35
Введение
Вопросам надёжности систем управления (САУ), особенно на стадии проектирования АСУ ТП с каждым годом уделяется всё большее внимание. Важность проблемы надежности САУ обусловлена их повсеместным распространением фактически во всех отраслях промышленности.
Основы теории надежности, применительно к описанию технических систем управления, разработаны Б.Г. Гнеденко, Ю.К. Беляевым, А.Д. Соловьевым и др.
Основной целью курсовой работы является формирование представления о надежности системы управления как совокупности надежности комплекса технических средств, управляющей вычислительной машины, программного обеспечения и оперативного персонала.
Задачи курсовой работы:
- дать понятие и сущность надежности автоматических систем;
- изучить показатели надежности систем;
- дать общую характеристику условиям работы автоматических систем;
- рассмотреть методы повышения надежности автоматических систем.
Объект исследования: автоматические системы.
Предмет исследования: общие сведения о надежности автоматических систем.
1.Теоретические основы понятия надежности автоматических систем
1.1.Понятие и сущность надежности автоматических систем
Для оценки поведения автоматической системы в эксплуатационных условиях используется понятие надежности системы. При эксплуатации автоматическая система может подвергаться воздействию: механических нагрузок (вибраций, ударов, постоянного ускорения); электрических нагрузок (напряжения, электрического тока, мощности); окружающих условий (температура, влажность, давление).
Влияние указанных факторов проявляется в виде отклонений параметров системы от номинальных (расчетных) значений. Эти отклонения могут быть настолько значительными, что система становится непригодной к использованию, так как возникновение больших отклонений параметров от расчетных значений при эксплуатации системы приводит к аварии или к появлению брака в выпускаемой продукции.
Когда система перестает удовлетворять предъявляемым к ней требованиям, систему считают отказавшей. Следовательно, надежность является одной из характеристик качества системы, поэтому она, как и другие характеристики системы (точность, быстродействие), должна оцениваться количественно на основе анализа технических параметров системы в эксплуатационных условиях.
Так как на отдельные технические параметры системы оказывают влияние различные факторы (схемные, конструктивные, производственные и эксплуатационные) и учесть их аналитически при детерминированном подходе к анализу системы невозможно, то количественная оценка надежности системы возможна только на основе теории вероятностей или ее специальных разделов (теории случайных процессов и математической статистики).
Надежность – свойство системы сохранять во времени и в установленных пределах значения всех параметров, характеризующих способность системы выполнять требуемые функции в заданных режимах и условиях эксплуатации.
Функции системы определяются целевым ее назначением. Автоматизированная система управления – это многофункциональная система. Вследствие воздействия возмущающих воздействий система может находиться в разных состояниях, обеспечивающих выполнение заданных ей функций. Однако, в каждом таком состоянии качество выполнения системой функций не будет одинаковым. Например, чем больше отклонение выходных параметров, характеризующих выполняемую функцию от заданных, тем менее качественно работает система, т.е. система менее эффективна. Под эффективностью системы понимают вероятность выполнения системой заданных функций при определенном значении параметра.
Таким образом, надежность автоматической системы с учетом возможных ее состояний должна определяться по формуле полной вероятности.
Если система может находиться в счетном множестве состояний, то надежность определяется формулой:
; (1)
где: Hi( tf )— вероятность i-го состояния системы при условиях эксплуатации f;
E(Hi)— эффективность i-го состояния;
t — требуемый интервал времени выполнения задачи;
K — число состояний.
В некоторых работах оценка качества автоматической системы разделяется на две задачи — исследование точности и надежности. Ту или иную задачу можно решить соответствующим выбором функции эффективности состояния системы.
Надежность, в сущности, является характеристикой эффективности системы. Если для оценки качества автоматической системы достаточно характеризовать ее надежностью выполнения системой функций в различных состояниях, то надежность совпадает с эффективностью системы.
Обобщенное количественное значение надежности системы в большинстве случаев трудно непосредственно получить из первичной информации, кроме того, она не позволяет оценить влияние различных этапов разработки и эксплуатации системы, поэтому надежность целесообразно рассматривать по трем главным составляющим, которые являются свойствами системы и могут характеризоваться как качественно, так и количественно:
-безотказность;
-восстанавливаемость (ремонтопригодность);
-готовность;
Безотказность – свойство системы сохранять работоспособность в течение требуемого интервала времени непрерывно без вынужденных перерывов.
Безотказность системы является одной из главных и определяющих составных частей надежности автоматической системы.
Для фиксированного интервала времени безотказной работы и заданных условий эксплуатации автоматическая система может находиться в одном из двух состояний: работоспособном (состояние, при котором значения параметров, характеризующих способность системы выполнять заданные функции, находятся в пределах, установленных нормативно-технической документацией) и неработоспособном (состояние системы, при котором значение хотя бы одного параметра не находится в указанных пределах).
Эти состояния системы представляют противоположные события, поэтому для них справедливо равенство, которое будем в дальнейшем называть основным статическим уравнением безотказности системы:
P+Q=1 (2)
где: Р — безотказность (надежность) системы;
Q — вероятность возникновения отказа системы.
Как известно, автоматическая система представляет собой комплекс отдельных приборов, не связанных между собой на заводе-изготовителе сборочными и монтажными операциями, но имеющих общее эксплуатационное назначение. Систему в целом можно представить рядом более простых подсистем.
Безотказность автоматической системы может служить лишь общей характеристикой системы, не позволяющей проследить влияние безотказности отдельных ее частей на безотказность автоматической системы в целом. Для того чтобы иметь возможность проводить такой анализ, введем понятия элемента и системы.
Элемент - составная часть системы, имеющая определенное назначение и выполняющая требуемые функции и которая рассматривается без дальнейшего разделения как единое целое.
Система – совокупность элементов, взаимодействующих между собой в процессе выполнения заданных функций.
Понятия «система» и «элемент» выражены одно через другое и условны: то, что является системой для одних задач, для других принимается элементом в зависимости от целей изучения, требуемой точности, уровня знаний о надежности и т.д. Даже такая сложная система, как АСУ ТП, может рассматриваться как элемент более сложной системы управления предприятием.
Разделение автоматической системы на элементы зависит от решения конкретной задачи при оценке ее надежности. После того как система или прибор разделены на элементы, в качестве основной характеристики элемента, при анализе надежности, можно считать его безотказность. Это позволяет в большинстве случаев при оценке безотказности прибора практически непосредственно не интересоваться функциональными характеристиками элементов, их конструктивным оформлением и т. д.
Для определения безотказности элементов справедливо равенство (2.1). При получении расчетных формул можно пользоваться как характеристикой безотказности, так и ее противоположной величиной - вероятностью отказа. В зависимости от конкретной задачи та или другая характеристика является более удобной. Иногда при получении расчетных формул, а также при оценке степени улучшения системы, приборов или элементов наиболее удобной характеристикой является величина, противоположная безотказности — вероятность отказа.
Например. Пусть безотказность усилительного тракта системы Р0=0,99. В результате применения дублирования тракта его безотказность возросла и стала равной Р=0,9999. Необходимо оценить степень улучшения безотказности усилительного тракта.
Степень увеличения безотказности будем оценивать коэффициентом р, представляющим отношение безотказности усовершенствованной схемы к безотказности первоначальной схемы, а степень уменьшения вероятности отказа — коэффициентом Sp, представляющим отношение соответствующих вероятностей отказа SP=P/P0=0,9999/0,99=1,01.
Тогда в первом случае если воспользоваться коэффициентом Sp, то безотказность прибора увеличивается в 1,01 раза или на 1%, что, на первый взгляд, может показаться не очень существенным, хотя в действительности безотказность прибора повышается значительно.
Если же воспользоваться коэффициентом S (S=Q/Q0=1*10-4/1*10-2=1*10-2) то вероятность отказа усовершенствованной схемы по сравнению с первоначальной схемой уменьшается в 100 раз.
Такая оценка степени улучшения системы является более удобной и наглядной, несмотря на то, что она отражает одну и ту же объективную сущность изменения качества системы.
Наряду с методами оценки безотказности автоматических систем по выходным параметрам системы, можно также применять методы оценки безотказности системы по ее входным воздействиям, которыми в частном случае являются возмущения или нагрузки, характеризующие условия эксплуатации.
Восстанавливаемость – свойство системы, заключающееся в ее приспособленности к предупреждению, обнаружению и устранению причин возникновения отказов, а также поддержанию и восстановлению работоспособного состояния путем проведения технического обслуживания и ремонтов.
Восстановлением называется событие, заключающееся в переходе системы из неработоспособного состояния в работоспособное, вследствие не только корректировки, настройки, ремонта, но и вследствие замены отказавшего оборудования или элемента на работоспособный. Соответственно, к невосстанавливаемым относят системы, восстановление которых непосредственно после отказа считается нецелесообразным или невозможным, а к восстанавливаемым – системы в которых производится восстановление непосредственно после отказа.
Одна и та же система в различных условиях применения может быть отнесена к невосстанавливаемым (например, если она расположена в необслуживаемом помещении, куда запрещен доступ персонала во время работы технологического агрегата) и к восстанавливаемым, если персонал сразу же после отказа может начать восстановление.