Файл: В юридической деятельности.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 1164

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1. Понятие информационных технологий. Терминология и объект информатики.

2. Количественная мера информации.

3. Понятие энтропии.

4. Современные информационные технологии в деятельности МВД России.

ОСНОВНЫЕ ВОПРОСЫ:

1. Информационные процессы и их особенности.

2. Кодирование информации.

Преимущества цифровой передачи видеоданныхКроме очевидных преимуществ формата, сам способ формирования цифрового изображения также несет в себе существенные преимущества. Цифровой сигнал не ослабляется при передаче на расстояние, как аналоговый сигнал. Поэтому если он принимается вообще, то принимается без искажений. Цифровой сигнал не подвержен помехам, характерным для работы нецифрового оборудования, таким как тени, «туман» или «снег». Передается же цифровой сигнал в компрессированном виде, что намного сужает требуемую полосу пропускания канала. В цифровом телевидении применяется схема компрессии MPEG-2 – та же, что и на DVD.Любая компрессия – это компромисс. Самое высокое качество у некомпрессированного цифрового видео, но для этого необходимо передавать невероятное количество данных. Такую пропускную способность можно обеспечить только в локальной сети. Чтобы передавать цифровой сигнал по существующим каналам, изображение с разрешением примерно вчетверо выше по сравнению с обычным нецифровым компрессируется в соотношении 77:1. «Чудо компрессии» позволяет не только передавать в эфир превосходное изображение. Благодаря запасу полосы пропускания, появляется возможность передавать цифровое аудио 7.1, то есть настоящий окутывающий звук (surround sound).Важнейшим компонентом HDTV служит совсем крошечная деталь – скромный пиксель. В аналоговом телевидении элементы изображения, из которых состоит красная, зеленая и синяя компоненты, представляют собой вертикальные прямоугольники. В HDTV они квадратные, как на компьютерных мониторах, и более, чем в четверо меньше пикселов аналогового ТВ, так что мелкие детали получаются намного четче, что позволяет разглядеть каждую пору на коже кинозвезды. 2. Информационные кросс - технологииК данному классу отнесены технологии пользователя, ориентированные на следующие (или аналогичные) виды преобразования информации:• распознавания символов;• звук-текст;• текст-звук;• автоматический перевод. Оптическое распознавание символов (OCR)Когда страница текста отсканирована в ПК, она представлена в виде состоящего из пикселей растрового изображения. Такой формат не воспринимается компьютером как текст, а как изображение текста и текстовые редакторы не способны к обработке подобных изображений. Чтобы превра­тить группы пикселей в доступные для редактирования символы и слова, изображение должно пройти сложный процесс, известный как оптическое распознавание символов (optical character recognition – OCR).В то время как переход от символьной информации к графической (растровой) достаточно элементарен и без труда осуществляется, например при выводе текста на экран или печать, обратный переход (от печатного текста к текстовому файлу в машинном коде) весьма затруднителен. Именно в связи с этим для ввода информации в ЭВМ исстари использовались перфоленты, перфокарты и др. промежуточные носители, а не исходные «бумажные» документы, что было бы гораздо удобнее. «В защиту» перфокарт скажем здесь, что наиболее «продвинутые» устройства перфорации делали надпечатку на карте для проверки ее содержания.Первые шаги в области оптического распознавания символов были предприняты в конце 50-х гг. XX в. Принципы распознавания, заложенные в то время, используются в большинстве систем OCR: сравнить изображение с имеющимися эталонами и выбрать наиболее подходящий.В середине 70-х гг. была предложена технология для ввода информации в ЭВМ, заключающаяся в следующем: исходный документ печатается на бланке с помощью пишущей машинки, оборудованной стилизованнымшрифтом (каждый символ комбинируется из ограниченного числа вертикальных, горизонтальных, наклонных черточек, подобно тому, как это делаем мы и сейчас, нанося на почтовый конверт цифры индекса); полученный «машинный документ» считывается оптоэлектрическим устройством (собственно OCR), которое кодирует каждый символ и определяет его позицию на листе; информация переносится в память ЭВМ, образуя электронный образ документа или документ во внутреннем представлении. Очевидно, что по сравнению с перфолентами (перфокартами) OCR-документ лучше хотя бы тем, что он без особого труда может быть прочитан и проверен человеком и, вообще, представляет собой «твердую копию» соответствующего введенного документа. Было разработано несколько модификаций подобных шрифтов, разной степени «удобочитаемости» (OCR A (рис 1), OCR В (рис 2) и пр.). Рис. 1. OCR – A Рис. 2. OCR – BОчевидно также, что считывающее устройство представляет собой сканер, хотя и специализированный(считывание стилизованных символов), но интеллектуальный(распознавание их).OCR – технология в данном виде просуществовала недолго и в настоящее время приобрела следующий вид: считывание исходного документа осуществляется универсальным сканером, осуществляющим создание растрового образа и запись его в оперативную память и/или в файл; функции распознавания полностью возлагаются на программные продукты, которые, естественно, получили название OCR-software. Исследования в этом направлении начались в конце 1950–х гг., и с тех пор технологии непрерывно совершенствовались. В 1970-х гг. и в начале 1980-х гг. программное обеспечение оптического распознавания символов все еще обладало очень ограниченными возможностями и могло работать только с некоторыми типами и размерами шрифтов. В настоящее время программное обеспечение оптического распознавания символов намного более интеллектуально и может распознать фактически все шрифты, даже при невысоком качестве изображения документа.Основные методы оптического распознаванияОдин из самых ранних методов оптического распознавания символов базировался на сопоставлении матриц или сравнении с образцом букв. Большинство шрифтов имеют формат Times, Courier или Helvetica и размер от 10 до 14 пунктов (точек). Программы оптического распознавания символов, которые используют метод сопоставления с образцом, имеют точечные рисунки для каждого символа каждого размера и шрифта.Сравнивая базу данных точечных рисунков с рисунками отсканированных символов, программа пытается их распознавать. Эта ранняя система успешно работала только с непропорциональными шрифтами (подобно Courier), где символы в тексте хорошо отделены друг от друга. Сложные документы с различными шрифтами оказываются уже вне возможностей таких программ. Рис. 3. Разные подходы к распознаваниюВыделение признаков было следующим шагом в развитии оптического распознавания символов. При этом распознавание символов основывается на идентификации их универсальных особенностей, чтобы сделать распознавание символов независимым от шрифтов. Если бы все символы могли быть идентифицированы, используя правила, по которым элементы букв (например, окружности и линии) присоединяются друг к другу, то индивидуальные символы могли быть описаны незави­симо от их шрифта. Например: символ «а» может быть представлен как состоящий из окружности в центре снизу, прямой линии справа и дуги окружности сверху в центре (рис. 3).Если отсканированный символ имеет эти особенности, он может быть правильно идентифицирован как символ «а» программой оптического распознавания.Выделение признаков было шагом вперед сравнительно с соответствием матриц, но практические результаты оказались весьма чувствительными к качеству печати. Дополнительные пометки на странице или пятна на бумаге существенно снижали точность обработки. Устранение такого «шума» само по себе стало целой областью исследований, пытающейся определить, какие биты печати не являются частью индивидуальных символов. Если шум идентифицирован, достоверные символьные фрагменты могут тогда быть объединены в наиболее вероятные формы символа.Некоторые программы сначала используют сопоставление с образцом и/или метод выделения признаков для того, чтобы распознать столько символов, сколько возможно, а затем уточняют результат, используя грамматическую проверку правильности написания для восстановления нераспознанных символов. Например, если программа оптического распознавания символов неспособна распознать символ «е» в слове «th



Кэш-память. Обмен данными внутри процессора происходит намного быстрее, чем обмен данными между процессором и оперативной памятью. Поэтому, для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают так называемую сверхоперативную или кэш-память. Когда процессору нужны данные, он сначала обращается к кэш-памяти, и только тогда, когда там отсутствуют нужные данные, происходит обращение к оперативной памяти. Чем больше размер кэш-памяти, тем выше вероятность, что необходимые данные находятся там. Поэтому высокопроизводительные процессоры имеют повышенные объемы кэш-памяти.

Различают кэш-память первого уровня (выполняется на одном кристалле с процессором), второго уровня (выполняется на отдельном кристалле, но в границах процессора) и третьего уровня (выполняется на отдельных быстродействующих микросхемах с расположением на материнской плате).

В процессе работы процессор обрабатывает данные, находящиеся в его регистрах, оперативной памяти и внешних портах процессора. Часть данных интерпретируется как собственно данные, часть данных – как адресные данные, а часть – как команды. Совокупность разнообразных команд, которые может выполнить процессор над данными, образовывает систему команд процессора. Чем больше набор команд процессора, тем сложнее его архитектура, тем длиннее запись команд в байтах и тем дольше средняя продолжительность выполнения команд.

Совместимость процессоров. Если два процессора имеют одинаковую систему команд, то они полностью совместимы на программном уровне. Это означает, что программа, написанная для одного процессора, может исполняться и другим процессором. Процессоры, имеющие разные системы команд, как правило, несовместимы или ограниченно совместимы на программном уровне.

Группы процессоров, имеющих ограниченную совместимость, рассматривают как семейства процессоров. Так, например, все процессоры Intel Pentium относятся к так называемому семейству х86. Родоначальником этого семейства был 16-разрядный процессор Intel 8086, на базе которого собиралась первая модель компьютера IBM PC. Впоследствии выпускались процессоры Intel 80286, Intel 80386, Intel 80486, Intel Pentium 60,66,75,90,100,133; несколько моделей процессоров Intel Pentium MMX, модели Intel Pentium Pro, Intel Pentium II, Intel Celeron, Intel Xeon, Intel Pentium III, Intel Pentium 4, модели AMD, Cyrex и другие. Все эти модели, и не только они, а также многие модели процессоров компаний AMD и Cyrix относятся к семейству х86 и обладают совместимостью по принципу «сверху вниз».


3.4. Внутренняя память

Под внутренней памятью понимают все виды запоминающих устройств, расположенные на материнской плате. К ним относятся оперативная память, постоянная память и энергонезависимая память.

Оперативная память (RAM – Random AccessMemory) – память с произвольным доступом – массив кристаллических ячеек, способных хранить данные.

В оперативной памяти хранятся данные и команды, которые в ближайшее время могут понадобиться для вычислений процессору или ожидают передачи другим подсистемам компьютера (видеокарте, жесткому диску и т.п.). Оперативная память передает информацию на порядки быстрее, чем накопители (жесткие диски или оптические накопители), и нужна для обеспечения непрерывности вычислений без задержек на получение данных. Без оперативной памяти современный компьютер также неработоспособен (ранние модели персональных компьютеров могли содержать чипы оперативной памяти прямо на материнской плате), как и без остальных основных комплектующих.

Физически оперативная память представляет собой линейный носитель информации. Под линейностью подразумевается то, что байты памяти пронумерованы, начиная с нуля, и для доступа к каждому байту процессору необходимо указать его порядковый номер. Этот номер называется адресом. Обмен информацией между процессором и памятью происходит следующим образом: на шине адреса процессор выставляет адрес, затем – если происходит операция чтения из памяти – на шине данных появляются данные, выставленные оперативной памятью, если же происходит запись – процессор сам выставляет на шину данных новое значение.

По физическому принципу действия различают динамическую память DRAM и статическую память SRAM. Ячейки динамической памяти можно представить в виде микроконденсаторов, способных накапливать электрический заряд. Недостатки памяти DRAM: более медленная запись и чтение данных, требует постоянной подзарядки. Преимущества: простота реализации и низкая стоимость.

Ячейки статической памяти можно представить как электронные микроэлементы – триггеры, состоящие из транзисторов. В триггере сохраняется не заряд, а состояние (включенный/выключенный). Преимущества памяти SRAM: значительно большее быстродействие. Недостатки: технологически более сложный процесс изготовления, и соответственно, большая стоимость.

Микросхемы динамической памяти используются как основная оперативная память, а микросхемы статической – для кэш-памяти.



Оперативная память в компьютере размещается на стандартных панелях, называемых модулями. Модули оперативной памяти вставляют в соответствующие разъемы на материнской плате.

В момент включения компьютера в его оперативной памяти отсутствуют любые данные, поскольку оперативная память не может сохранять данные при отключенном компьютере. Но процессору необходимы команды, в том числе и сразу после включения. Поэтому процессор обращается по специальному стартовому адресу за своей первой командой. Этот адрес указывает на память, которую принято называть постоянной памятью ROM или постоянным запоминающим устройством (ПЗУ). Микросхема ПЗУ способна продолжительное время сохранять информацию, даже при отключенном компьютере. Комплект программ, находящихся в ПЗУ, образует базовую систему ввода-вывода (BIOS – Basic Input Output System). Основное назначение программ этого пакета состоит в том, чтобы проверить состав и работоспособность компьютерной системы и обеспечить взаимодействие с клавиатурой, монитором, жестким диском и дисководом гибких дисков. Программы, входящие в BIOS, позволяют наблюдать на экране диагностические сообщения, сопровождающие запуск компьютера, а также вмешиваться в ход запуска с помощью клавиатуры.

Работа таких стандартных устройств, как клавиатура, может обслуживаться программами BIOS, но такими средствами невозможно обеспечить роботу со всеми возможными устройствами (в связи с их огромным разнообразием и наличием большого количества разных параметров). Но для своей работы BIOS требует всю информацию о текущей конфигурации системы. По очевидной причине эту информацию нельзя сохранять ни в оперативной памяти, ни в постоянной. Специально для этих целей на материнской плате есть микросхема энергонезависимой памяти, которая называется CMOS. От оперативной памяти она отличается тем, что ее содержимое не исчезает при отключении компьютера, а от постоянной памяти она отличается тем, что данные можно заносить туда и изменять самостоятельно, в соответствии с тем, какое оборудование входит в состав системы.

Микросхема памяти CMOS постоянно питается от небольшой батарейки, расположенной на материнской плате. В этой памяти сохраняются данные о гибких и жестких дисках, процессоре и т.д. Тот факт, что компьютер четко отслеживает дату и время, также связан с тем, что эта информация постоянно хранится (и обновляется) в памяти CMOS. Таким образом, программы BIOS считывают данные о составе компьютерной системы из микросхемы CMOS, после чего они могут осуществлять обращение к другим устройствам компьютера.


3.5. Видеокарта

Видеокарта представляет собой устройство, предназначенное для обработки и вывода графической информации (интерфейса операционной системы и программ, видео и т.д.) на устройство отображения (монитор). Размеры видеокарт зависят от того класса, к которому они относятся: карты начального – Low-End – класса имеют длину около 15-18 см, Middle-End – 20 см, длина High-End достигает 25-27 см. Печатная плата видеоадаптера состоит из нескольких слоев, каждый из которых содержит тонкие токопроводящие дорожки. Дорожки на плате объединяют между собой графическое ядро (GPU – графический процессор, видеоядро), видеопамять, раздельные подсистемы питания ядра и памяти, интерфейсный разъем для подключения к материнской плате, а также разъемы для подключения мониторов и телевизора.

Ключевым компонентом любой современной видеокарты является графический процессор, который занимается расчетами выводимой на экран информации и трехмерных сцен. Графический процессор представляет собой чип расположенный на плате, кристалл которого содержит сотни миллионов транзисторов. Каждый такой чип состоит из вычислительных блоков, контроллеров шины и памяти, блоков для вывода видеоинформации (RAMDAC). Вся эта структура определяется архитектурой ядра, которая вначале разрабатывается для самого мощного видеоадаптера в семействе-поколении, затем такое ядро упрощается для менее производительных решений методом исключения определенных блоков. Частота графического процессора задается, исходя из возможностей чипа или маркетинговых соображений разработчиков.

В зависимости от того, какое графическое ядро положено в основу видеокарты, определяются ее характеристики: поддержка тех или иных технологий визуализации и рендеринга, тип памяти и ширина ее шины. На данный момент ведущими разработчиками графических процессоров являются компании NVIDIA, с серией видеокарт GeForce, и AMD с ее линейкой Radeon.

На видеокарте, как и на материнской плате, имеется микросхема BIOS, в которой хранится информация о видеоадаптере, экранные шрифты и так далее, но в отличие от материнской платы в BIOS видеоадаптера зайти практически нельзя, его можно лишь сохранить, изменить и затем прошить заново.

Для хранения изображений, текстур и другой необходимой информации на плате видеокарты установлены чипы памяти, соединенные с графическим процессором специальной шиной, ширина которой определяется в битах: 64, 128, 256, 320, 384, 512. Необходимая разрядность шины, поддерживаемая видеопроцессором, получается путем установки определенного количества микросхем с интерфейсом 16 или 32 бит. Шиной в 16 бит снабжены чипы первого стандарта графической памяти GDDR и второго поколения – GDDR2, шиной в 32 бит снабжены чипы как первого поколения, так и третьего – GDDR3, а также вышедшего совсем недавно четвертого – GDDR4. Чем больше общая ширина шины, тем выше пропускная способность памяти, а это, в свою очередь, влияет на производительность.


Чипы памяти располагаются возле графического процессора на лицевой стороне платы, но в зависимости от объема, типа памяти шины также могут быть расположены и на обратной стороне. Объем каждого чипа в отдельности измеряется в мегабитах, и после установки производителем на видеокарту определенного количества микросхем получается необходимый объем памяти: 128, 256, 512, 1024 и т.д. МБайт. Чем больше объем, тем больше можно хранить необходимой информации, а значит, качественнее можно будет выставить настройки графики.

Следующий пункт, отвечающий за характеристики видеопамяти, – ее рабочая частота, влияющая на пропускную способность. Так как современная память использует технологию DDR (Double Data Rate – удвоенная скорость передачи данных), то в качестве значений может указываться как реальная частота, так и эффективная, то есть равная удвоенной реальной. Реальную частоту памяти можно вычислить по времени доступа, указанному в маркировке чипов. Например, в видеокарте Chaintech GeForce 7600GT установлены чипы со временем доступа 1,2 нс, тогда реальная частота равна 1000/1,2=833 МГц или округленно 800 МГц, а эффективная будет 800*2=1600 МГц. Иногда производители устанавливают более скоростную память, но работающую на меньшей, чем положено, частоте, тем самым оставляя возможность для разгона. На видеокартах с памятью GDDR и GDDR2 эффективные частоты могут достигать 1000 МГц, на картах с GDDR3 частоты достигают 2200 МГц, а с GDDR4 – более 2 ГГц.

Каждая видеокарта имеет разъемы для подключения мониторов и телевизора. Обычные ЭЛТ и TFT-мониторы подключаются к VGA-разъему – D-Sub, через который вся информация передается в аналоговом виде. Недостатком такого метода является малая помехозащищенность, появление артефактов и замыливание изображения, так как в видеокарте картинка формируется в цифровом виде, потом в специальном блоке – RAMDAC (RAM – память произвольного доступа и DAC – цифро-аналоговый преобразователь) преобразуется в аналоговый вид, и уже в мониторе операция повторяется в обратном порядке.

Для повышения качества передаваемого сигнала предназначен цифровой интерфейс – DVI, информация по которому передается в цифровом виде, без потерь. Подобные интерфейсы устанавливаются в TFT-мониторах, проекторах и в каждой современной видеокарте.

ТВ-выход S-Video позволяет вывести видеосигнал на телевизор или другое устройство, оборудованное соответствующим входом.

3.6. Жесткий диск

Жесткий диск (винчестер)представляет собой сложное устройство для хранения данных, в основу которого положен принцип магнитной записи электрических сигналов.