Файл: Методические рекомендации по организации и проведению лабораторных работ и практических занятий специальность 21. 02. 01 Разработка и эксплуатация нефтяных и газовых месторождений.docx

ВУЗ: Не указан

Категория: Методичка

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 195

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ЛАБОРАТОРНАЯ РАБОТА №6НАБЛЮДЕНИЕ БРУНОВСКОГО ДВИЖЕНИЯЦель: осуществить наблюдение броуновское движение с помощью школьного микроскопа.Оборудование: Школьный микроскоп. Окуляр 15х. Объектив 40х. Акварельные краски (тушь) , 1-2 см3 молока. Предметные и покровные стекла (5-6 шт.). Два сосуда с водой разной температуры. Теория.Броуновское движение - это беспорядочное движение малых (размерами в несколько мкм и менее) частиц, взвешенных в жидкости или газе , ,происходящее под действием толчков со стороны молекул окружающей среды. Открыто оно р.Броуном в 1827 году. Видимые только под микроскопом взвешенные частицы движутся независимо друг от друга и описывают сложные зигзагообразные траектории. Броуновское движение не ослабевает со временем и не зависит от химических свойств среды, его интенсивность увеличивается с ростом температуры среды и с уменьшением её вязкости и размеров частиц.Последовательно объяснение броуновского движения было дано А. Эйнштейном и М.Смолуховским в 1905-1906 годах на основе молекулярно-кинетической теорий. Согласно этой теории, молекулы жидкости или газа находятся в постоянном тепловом движении, причём импульсы различных молекул неодинаковы по величине и направлению. Если поверхность частицы, помещённой в такую среду, мала, как это имеет место для броуновской частицы, то удары, испытываемые частицей со стороны окружающих её молекул, не будут точно компенсироваться. Поэтому в результате «бомбардировки» молекулами жидкости или газа броуновская частицы приходит в беспорядочное движение, меняя величину и направление своей скорости примерно 1014раз в секунду. Характер движения частиц при броуновском движении можно посмотреть на рис.1. Рис.1Броуновское движение наблюдается в более сложных формах в технике. Это - тепловые шумы в радиосхемах, вибрации легких деталей в измерительных приборах и т.п.Осуществить наблюдение броуновского движения можно с помощью школьного микроскопа. Внешний вид микроскопа показан на рис.2 Рис.2 Он состоит из: окуляра-1, винта настройки-2, кронштейна-3, упорного винта-4, пружинного держателя-5, шарнира-6, основания-7, осветительного устройства-8, дисковой диафрагмы-9, предметного столика, микрообъектива-11, револьверной головки объективов-12, тубусодержателя-13. Для работы установите"микроскоп на стол предметным столиком от себя. Для удобства наблюдения тубусодержатель можно наклонить. Установите предметное стекло с препаратами на предметный столик, прижав его пружинными держателями. Глядя в окуляр, при помощи винтов настройки медленно поднимайте или опускайте тубус микроскопа до тех пор, пока в поле зрения не появится изображение препарата. При фокусировке можно осторожно передвигать препарат, т.к., подвижное изображение гораздо легче заметить, чем неподвижное. Найдя изображение, еще более медленным вращением винтов добейтесь наиболее резкого изображения. Качество изображения в микроскопе в значительной степени зависит от освещения, поэтому настройка освещения является важной подготовительной операцией. Свет от источника (окно, лампа) должен с помощью зеркала направляться через диафрагму предметного столика на препарат. Предметный столик снабжен диском, поворотом которого можно менять диаметр отверстия диафрагмы. Наблюдая в окуляр, поворачивайте зеркало до тех пор, пока все поле зрения не окажется равномерно освещенным. Фокусировка может считаться законченной, когда будут максимально устранены недостатки изображения в виде полос, пятен, бликов. Ведя наблюдение, не закрывайте свободный глаз для предупреждения его утомления.Порядок выполнения работы Подготовить микроскоп для работы. На предметное стекло нанести кисточкой 1-2 капли воды. Коснутся несколько раз той же кисточкой поверхности краски (туши) и снова ввести кисточку в приготовленные капли. Каплю окрашенной жидкости кисточкой перенести на другое предметное стекло и закрыть покровным стеклом. Приготовленный препарат положить на предметный столик микроскопа. Зеркало микроскопа направить на источник света, чтобы получить хорошее освещение препарата. Опустить объектив кремальерным винтом на расстояние

Пример.

Лабораторная работа "Электроемкость плоского конденсатора".



Таблица №2

Номер измерения

d

мм

h

мм

d

мм

h

мм

1

 

 

 

 

2

 

 

 

 

3

 

 

 

 

Средние величины

 

 

 

 

Высоту цилиндра h измеряют при помощи штангельциркуля один раз. Абсолютную ошибку взять равной половине точности штангельциркуля = 0,05 мм.

Вычислить объем цилиндра:



(5)

Взвешиванием на весах определяют массу цилиндра m с точностью до = 0,1 г.

Вычисляют плотность вещества цилиндра: . Относительная ошибка при определении плотности цилиндра равна:



(6)

Абсолютная ошибка равна: (7)

Окончательный результат определения плотности вещества цилиндра записывают в виде:



Вопросы для самоконтроля

  1. Какие измерения называют прямыми, а какие – косвенными?

  2. Чем отличаются методики расчёта ошибок для прямых и косвенных измерений?

  3. В чём состоит принцип равной точности измерений и выполнен ли он в упражнениях 1 и 2 ?

  4. Составьте формулу для расчёта относительной ошибки по предложенной преподавателем расчётной формуле некоторой косвенно определяемой физической величины.

  5. Справедливо ли утверждение “Точность прямых измерений пропорциональна числу измерений”? Ответ обоснуйте.

  6. Сформулируйте правило определения числа прямых измерений. Примените это правило к результатам ваших измерений.

  7. Какая величина является асимптотой для средней абсолютной ошибки при увеличении числа измерений?

  8. Чем определяется число значащих цифр при записи результатов расчётов среднего значения физ. величины и его средней абсолютной ошибки?

  9. С какой точностью надо взять число  при расчёте объёма цилиндра?

  10. Как следует выбирать масштаб значений физических величин, откладываемых на осях графиков?

  11. Каким образом на графиках отражают точность измерений и расчётов значений физических величин?

  12. Какой линией, ломаной или плавной кривой, изображают на графиках зависимости значений функциональных физических величин от значений независимых физических величин? Ответ обоснуйте.


МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ

ЛАБОРАТОРНОЙ РАБОТЫ № 2

Тема: «Изучение движения тела по окружности под действием сил упругости и тяжести»

Цель работы: определение центростремительного ускорения шарика при его равномерном движении по окружности.

Теоретическая часть работы.

Эксперименты проводятся с коническим маятником. Небольшой шарик движется по окружности радиуса R. При этом нить АВ, к которой прикреплен шарик, описы­вает поверхность прямого кругового конуса. На шарик действуют две силы: сила тяжести и натяжение ни­ти (рис. а). Они создают центростремительное ускорение , направленное по радиусу к центру окруж­ности. Модуль ускорения можно определить кинематиче­ски. Он равен:



Для определения ускорения надо измерить радиус окружности и период обращения шарика по окружности.

Центростремительное (нормальное) ускорение можно определить также, используя законы динамики.

Согласно второму закону Ньютона . Разло­жим силу на составляющие и , направленные по радиусу к центру окружности и по вертикали вверх.

Т огда второй закон Ньютона запишется следующим об­разом:



Направление координатных осей выберем так, как показано на рисунке б. В проекциях на ось О1у уравнение движения ша­рика примет вид: 0 = F2 — mg. От­сюда F2 = mg: составляющая уравновешивает силу тяжести , действующую на шарик.

Запишем второй закон Нью­тона в проекциях на ось О1х:

man = F1. Отсюда

М
одуль составляющей F1 мож­но определить различными спосо­бами. Во-первых, это можно сде­лать из подобия треугольников ОАВ и FBF1:



Отсюда и

Во-вторых, модуль составляю­щей F1 можно непосредственно из­мерить динамометром. Для этого оттягиваем горизонтально располо­женным динамометром шарик на расстояние, равное радиусу R окружности (рис. в), и опре­деляем показание динамометра. При этом сила упругости пружи­ны уравновешивает составляющую .

Сопоставим все три выражения для аn:



, ,

и убедимся, что они близки меж­ду собой.

В этой работе с наибольшей тщательностью следует из­мерять время. Для этого полезно отсчитывать возможно большее число оборотов маятника, уменьшая тем самым относительную погрешность.

Взвешивать шарик с точностью, которую могут дать лабораторные весы, нет необходимости. Вполне достаточ­но взвешивать с точностью до 1 г. Высоту конуса и ра­диус окружности достаточно измерить с точностью до 1 см. При такой точности измерений относительные по­грешности величин будут одного порядка.

Оборудование: штатив с муфтой и лапкой, лента измерительная, циркуль, динамометр лабораторный, весы с разновесами, шарик на нити, кусочек пробки с отверстием, лист бумаги, линейка.

Указания к работе.

1. Определяем массу шарика на весах с точностью до 1 г.

2. Нить продеваем сквозь отверстие и зажимаем пробку в лапке штатива (рис. в).

3. Вычерчиваем на листе бумаги окружность, радиус которой около 20 см. Измеряем радиус с точностью до 1 см.

4. Штатив с маятником располагаем так, чтобы продолжение шнура проходило через центр окружности.

5. Взяв нить пальцами у точки подвеса, вращаем маятник так, чтобы шарик описывал окружность, равную начерченной на бумаге.


6. Отсчитываем время, за которое маятник совершает, к примеру, N = 50 оборотов.

7. Определяем высоту конического маятника. Для этого измеряем расстояние по вертикали от центра шарик; до точки подвеса.

8. Находим модуль центростремительного ускорение по формулам:

и

9. Оттягиваем горизонтально расположенным динамо метром шарик на расстояние, равное радиусу окружности, и измеряем модуль составляющей . Затем вычисляем ускорение по формуле .

10. Результаты измерений заносим в таблицу.

Номер опыта

R

N

Δt

T= Δt/N

h

m



























Сравнивая полученные три значения модуля центростремительного ускорения, сделать вывод:

ЛАБОРАТОРНАЯ РАБОТА №3

Определение коэффициента трения скольжения.
Цель работы:

измерить коэффициент трения скольжения дерева по дереву.

Оборудование:

деревянный брусок, деревянная линейка, набор грузов известной массы (по 100

г), динамометр.

Описание работы.

Если тянуть брусок с грузом по горизонтальной поверхности так, чтобы брусок двигался равномерно, прикладываемая к бруску горизонтальная сила равна по модулю силе трения скольжения F, действующей на брусок со стороны поверхности. Модуль силы трения F связан с модулем силы нормального давления N соотношением F =μ N. Измерив F и N, можно найти коэффициент трения μ по формуле