Файл: Методические рекомендации по организации и проведению лабораторных работ и практических занятий специальность 21. 02. 01 Разработка и эксплуатация нефтяных и газовых месторождений.docx

ВУЗ: Не указан

Категория: Методичка

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 196

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ЛАБОРАТОРНАЯ РАБОТА №6НАБЛЮДЕНИЕ БРУНОВСКОГО ДВИЖЕНИЯЦель: осуществить наблюдение броуновское движение с помощью школьного микроскопа.Оборудование: Школьный микроскоп. Окуляр 15х. Объектив 40х. Акварельные краски (тушь) , 1-2 см3 молока. Предметные и покровные стекла (5-6 шт.). Два сосуда с водой разной температуры. Теория.Броуновское движение - это беспорядочное движение малых (размерами в несколько мкм и менее) частиц, взвешенных в жидкости или газе , ,происходящее под действием толчков со стороны молекул окружающей среды. Открыто оно р.Броуном в 1827 году. Видимые только под микроскопом взвешенные частицы движутся независимо друг от друга и описывают сложные зигзагообразные траектории. Броуновское движение не ослабевает со временем и не зависит от химических свойств среды, его интенсивность увеличивается с ростом температуры среды и с уменьшением её вязкости и размеров частиц.Последовательно объяснение броуновского движения было дано А. Эйнштейном и М.Смолуховским в 1905-1906 годах на основе молекулярно-кинетической теорий. Согласно этой теории, молекулы жидкости или газа находятся в постоянном тепловом движении, причём импульсы различных молекул неодинаковы по величине и направлению. Если поверхность частицы, помещённой в такую среду, мала, как это имеет место для броуновской частицы, то удары, испытываемые частицей со стороны окружающих её молекул, не будут точно компенсироваться. Поэтому в результате «бомбардировки» молекулами жидкости или газа броуновская частицы приходит в беспорядочное движение, меняя величину и направление своей скорости примерно 1014раз в секунду. Характер движения частиц при броуновском движении можно посмотреть на рис.1. Рис.1Броуновское движение наблюдается в более сложных формах в технике. Это - тепловые шумы в радиосхемах, вибрации легких деталей в измерительных приборах и т.п.Осуществить наблюдение броуновского движения можно с помощью школьного микроскопа. Внешний вид микроскопа показан на рис.2 Рис.2 Он состоит из: окуляра-1, винта настройки-2, кронштейна-3, упорного винта-4, пружинного держателя-5, шарнира-6, основания-7, осветительного устройства-8, дисковой диафрагмы-9, предметного столика, микрообъектива-11, револьверной головки объективов-12, тубусодержателя-13. Для работы установите"микроскоп на стол предметным столиком от себя. Для удобства наблюдения тубусодержатель можно наклонить. Установите предметное стекло с препаратами на предметный столик, прижав его пружинными держателями. Глядя в окуляр, при помощи винтов настройки медленно поднимайте или опускайте тубус микроскопа до тех пор, пока в поле зрения не появится изображение препарата. При фокусировке можно осторожно передвигать препарат, т.к., подвижное изображение гораздо легче заметить, чем неподвижное. Найдя изображение, еще более медленным вращением винтов добейтесь наиболее резкого изображения. Качество изображения в микроскопе в значительной степени зависит от освещения, поэтому настройка освещения является важной подготовительной операцией. Свет от источника (окно, лампа) должен с помощью зеркала направляться через диафрагму предметного столика на препарат. Предметный столик снабжен диском, поворотом которого можно менять диаметр отверстия диафрагмы. Наблюдая в окуляр, поворачивайте зеркало до тех пор, пока все поле зрения не окажется равномерно освещенным. Фокусировка может считаться законченной, когда будут максимально устранены недостатки изображения в виде полос, пятен, бликов. Ведя наблюдение, не закрывайте свободный глаз для предупреждения его утомления.Порядок выполнения работы Подготовить микроскоп для работы. На предметное стекло нанести кисточкой 1-2 капли воды. Коснутся несколько раз той же кисточкой поверхности краски (туши) и снова ввести кисточку в приготовленные капли. Каплю окрашенной жидкости кисточкой перенести на другое предметное стекло и закрыть покровным стеклом. Приготовленный препарат положить на предметный столик микроскопа. Зеркало микроскопа направить на источник света, чтобы получить хорошее освещение препарата. Опустить объектив кремальерным винтом на расстояние

Пример.

Лабораторная работа "Электроемкость плоского конденсатора".



- ) между ними:  , где:  - электроемкость плоского конденсатора,

- потенциал нижней пластины конденсатора,

- потенциал верхней пластины конденсатора, U- напряжение между пластинами (обкладками) конденсатора,

U= ( ) - разность потенциалов (напряжение между пластинами).

Преобразуем формулу к виду  .

Плоский конденсатор представляет собой две параллельные плоские пластины (обкладки), заряженные одинаковыми по абсолютному значению, но разноименными зарядами. Пластины (обкладки) конденсатора имеют площадьS, находятся на расстоянии d друг от друга. Между обкладками конденсатора расположен диэлектрик (воздух, органическое стекло, эбонит) с относительной диэлектрической проницаемостью  .

Порядок выполнения работы.

Подготовительный этап.

Подготовить экспериментальную установку к проведению исследовательской деятельности:

1) поставить электрометр в центре лабораторного стола,

2) первый диск укрепить на центральном стержне электрометра,

3) второй диск прикрепить к лапке штатива,

4) корпус электрометра соединить проводом со вторым диском и заземлить.

5) расположить диски на расстоянии 5 сантиметров так, чтобы их центры были на одной прямой, проведенной через ось стержня электрометра.

6) получить разрешение преподавателя на проведение опытов.


Основной этап.

1) Ослабить зажим лапки штатива так, чтобы можно было без больших усилий опускать (поднимать) второй диск конденсатора.

2) Взять в руку линейку, осуществить электризацию путем трения шелковой ткани об оргстекло.

3) Зарядить нижнюю пластинку конденсатора, прикоснувшись к стержню электроскопа наэлектризованной линейкой. Верхняя пластинка приобретет электрический заряд равный по величине, но противоположный по знаку. Конденсатор заряжен. Установка готова для проведения опытов.

Опыт № 1.

1) Уменьшаем расстояние d между пластинами конденсатора,медленно приближая верхний диск к нижнему диску.

2) Наблюдаем за показаниями стрелки электрометра, как изменяется напряжение U (увеличивается или уменьшается),

3) Записываем в таблицу № 1 результат наблюдения.

4) Используя формулу  , записываем вывод о том, что происходит с электроемкостью конденсатора С (увеличивается или уменьшается).

Опыт № 2.

1) Увеличиваем расстояние d между пластинами конденсатора, медленно поднимая верхний диск.

2) Наблюдаем за показаниями стрелки электрометра, как изменяется напряжение U (увеличивается или уменьшается).

3) записываем в таблицу № 1 результат наблюдения.

4) Используя формулу  , записываем вывод о том, что происходит с электроемкостью С конденсатора (увеличивается или уменьшается).

5) Анализируя результаты опытов и наблюдений, записываем в таблицу № 1 вывод о том, какая зависимость существует междуэлектроемкостью конденсатора С и расстоянием d (прямая пропорциональная зависимость или обратная пропорциональная зависимость).

Таблица № 1.


расстояние между пластинами

U
напряжение



электроемкость

Вывод: какая существует зависимость между электроемкостью С и расстоянием d

уменьшается










увеличивается








Опыт № 3.

1) Устанавливаем расстояние dмежду пластинами конденсатора d  5 миллиметров.

2) Замечаем положение стрелки электрометра.

3) Осторожно вводим стеклянную пластинку (диэлектрик) между обкладками конденсатора.

4) Отмечаем новое положение стрелки электрометра.

5) Записываем в таблицу № 2, как изменилось напряжение U (увеличивается или уменьшается).

6) Используя формулу  , записываем вывод о том, что происходит с электроемкостью С конденсатора (увеличивается или уменьшается).

7) Вынимаем из конденсатора стеклянную пластинку, возвращаем на прежнее место.

Опыт № 4.

1) Расстояние между обкладками конденсатора остается без изменения. (Расстояние между пластинами конденсатора d   5 миллиметров).

2) Замечаем положение стрелки электрометра.

3) Осторожно вводим эбонитовую пластинку (диэлектрик) между обкладками конденсатора.

4) Отмечаем новое положение стрелки электрометра.

5) Записываем в таблицу № 2, как изменилось напряжение U (увеличивается или уменьшается)

6) Используя формулу  , записываем вывод о том, что происходит с электроемкостью С конденсатора (увеличивается или уменьшается).

7) Анализируя результаты опытов и наблюдений, записываем вывод о том, какая зависимость существует между электроемкостью конденсатора С и диэлектрической проницаемостью   (обратная пропорциональная зависимость или прямая пропорциональная зависимость).

8) Вынимаем из конденсатора эбонитовую пластинку, возвращаем на прежнее место.

Таблица № 2.


диэлектрическая проницаемость среды

U
напряжение



электроемкость

Вывод: какая существует зависимость между электроемкостью С и диэлектрической проницаемостью среды 

уменьшается

 

 

 

увеличивается

 

 


Опыт № 5.

1) Расстояние между обкладками конденсатора остается без изменения. (Расстояние между пластинами конденсатора d   5 миллиметров).

2) Замечаем положение стрелки электрометра.

3) Наблюдая за показаниями стрелки электрометра, сдвигаем верхнюю обкладку конденсатора, уменьшая площадь взаимного перекрытия пластин.

4) Замечаем новое положение стрелки электрометра.

5) Записываем в таблицу № 3, как изменяется напряжение U (увеличивается или уменьшается)

6) Используя формулу  , записываем вывод о том, что происходит с электроемкостью С конденсатора (увеличивается или уменьшается).

7) Анализируя результаты опытов и наблюдений, записываем вывод о том, какая зависимость существует между электроемкостью конденсатора С и величиной площади S(обратная пропорциональная зависимость или прямая пропорциональная зависимость).

Опыт № 6.

1) Расстояние между обкладками конденсатора остается без изменения. (Расстояние между пластинами конденсатора d   5 миллиметров).

2) Замечаем положение стрелки электрометра.

3) Наблюдая за показаниями стрелки электрометра, сдвигаем верхнюю обкладку конденсатора, увеличивая площадь взаимного перекрытия пластин.

4) Замечаем новое положение стрелки электрометра.

5) Записываем в таблицу № 3, как изменяется напряжение U (увеличивается или уменьшается).

6) Используя формулу  , записываем вывод о том, что происходит с электроемкостью С конденсатора (увеличивается или уменьшается).

7) Анализируя результаты опытов и наблюдений, записываем вывод о том, какая зависимость существует между электроемкостью конденсатора С и площадью взаимного перекрытия пластин S(обратная пропорциональная зависимость или прямая пропорциональная зависимость).

Таблица № 3.

S – площадь взаимного перекрытия пластин

U
напряжение



электроемкость

Вывод: какая существует зависимость между электроемкостью С и площадью пластин S

уменьшается

 

 

 

увеличивается

 

 


Вывод. Ученики обсуждают результаты своих исследований, выдвигают гипотезы и приходят к обобщенному выводу: какая связь существует между электроемкостью Си параметрамиплоского конденсатора такими, как

  • площадь пластин S,

  • относительная диэлектрическая проницаемость  ,

  • расстояние между обкладками конденсатора d.

Они записывают свой вывод, используя символические обозначения С, S ,  d.

Преподаватель предлагает исследователям записать формулу плоского конденсатора, используя электрическую постоянную   (значение электрической постоянной ученики извлекают из справочника).

Заключительный этап.

Применить полученную формулу для расчета электроемкости плоского конденсатора, используемого в этом эксперименте ( самостоятельно начертить таблицу, измерить параметры конденсатора, выписать из справочника значение относительной диэлектрической проницаемости эбонита, расчеты произвести в международной системе С И , заполнить таблицу). Ученики оформляют работу и сдают учителю на проверку.

Примечание.Лабораторная работа физпрактикума в 10 классе рассчитана на два академических часа, проводится группой учеников в составе (2-4) человек под руководством учителя. Ученики обязаны строго соблюдать правила техники безопасности. 

Литература:

  1. Касьянов В.А. Физика 10 кл.: Учебник для общеобразовательных учреждений. – М.: Дрофа, 2003.

  2. Энциклопедия для детей. Техника. – М.: Аванта +, 2001.

  3. Пёрышкин А.В., Гутник Е.М. Физика 9 кл.: Учебник для общеобразовательных учреждений.- М.: Дрофа, 2002.

  4. Перельман Я.И. Знаете ли вы физику? – М.: ВАП, 1994.

  5. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика: Учеб. для 10 кл. общеобразоват. учреждений. – М.: Просвещение, 2001.

Яворский Б.М., Детлаф А.А. Справочник по физике для инженеров и студентов вузов. – М.: Издательство “Наука” Главная редакция физико-математической литературы. 1977.
Приложение. Ученики в процессе выполнения работы заполняют таблицы следующим образом:
Таблица № 1.


d

расстояние между пластинами


U

напряжение



электроемкость

Вывод: какая существует зависимость между электроемкостью С

и расстоянием d

уменьшается

уменьшается

увеличивается

обратная пропорциональная

зависимость

увеличивается

увеличиваетя

уменьшается