Файл: Купности и их обработки. Такие вопросы рассматриваются в мате матической статистике.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.01.2024
Просмотров: 66
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Используя этот способ оценки достоверности различия выборочных средних значений двух выборок, следует придерживаться такой последовательности действий. Во-первых, по экспериментальным данным нужно найти значения выборочных средних и средних квадратических отклонений для каждой выборки. Затем, сравнив величины х и у, найти величину f. После этого следует задать определенное значение доверительной вероятности и по таблице 10 найти tтeoр . Затем по формуле (3.30) рассчитать toп.
Если при сравнении теоретического и опытного критериев Стью-дента окажется, что toп > tтeoр, то различие между выборочными средними значениями случайных величин Xи У можно считать существенным с заданной доверительной вероятностью. В противоположном случае различия несущественны.
Представленный выше способ оценки достоверности различий выборок по выборочным средним является довольно простым. Существует большое число тестов и критериев для сравнения выборок и составления заключения о достоверности их различий. Как правило, при этом рассматривают вероятность двух взаимоисключающих гипотез. Одна из них, условно называемая «нулевой» гипотезой, заключается в том, что наблюдаемые различия между выборками случайны (т. е. фактически различий нет). Альтернативная гипотеза означает, что наблюдаемые различия статистически достоверны. При этом для оценки обоснованности вывода о достоверности различий используют три основных доверительных уровня, при которых принимается или отвергается нулевая гипотеза. Первый уровень соответствует уровню значимости 0 < 0,05; для второго уровня 0 < 0,01. Наконец, третий доверительный уровень имеет 0 < 0,001. При соблюдении соответствующего условия нулевая гипотеза считается отвергнутой. Чем выше доверительный уровень, тем более обоснованным он считается. Фактически значимость вывода соответствует вероятности р = 1 - 0. В медицинских и биологических исследованиях считают достаточным уже первый уровень, хотя наиболее ответственные выводы предпочтительнее делать с большей точностью. Одной из методик, позволяющих судить о достоверности различий статистических распределений, яв
ляется ранговый тест Уилкоксона. Под рангом (Ri)понимают номер, под которым стоят исходные данные в ранжированном ряду. Если в двух сравниваемых выборках данному номеру соответствуют одинаковые варианты, то рангом этих вариант является среднее арифметическое двух рангов — данного и следующего за ним (см. пример). Покажем, как используется этот тест на примере сравнения двух равных по объему выборок.
*Измеряли массу 13 недоношенных новорожденных (в граммах) в двух районах А и Б большого промышленного центра, один из которых (Б) отличался крайне неблагоприятной экологической обстановкой. Получены два статистических распределения (А) и (Б):
А: 970 990 1080 1090 1110 1120 ИЗО 1170 1180 1180 1210 1230 1270
Б: 780 870 900 900 990 1000 1000 1020 1030 1050 1070 1070 1100
Следует решить вопрос о том, достоверны ли различия между этими статистическими распределениями.
Составим общий ранжированный ряд с указанием номеров соответствующих вариант (RА.Б) — рангов (строки А и Б соответствуют выборкам):
А: 970990 1080 1090 1110..
RА: 5 6,5 15 16 18
Б: 780 870 900 90,0 990 1000 1000 1020 1030 1050 1070 1070 1100
RБ : 1 2 3 4 6,5 8 9 10 11 12 13 14 17
Как видно, варианта 990 встречается в первой и второй выборках, поэтому для нее рангом является среднее арифметическое значение 6 и 7.
Далее в ряду остаются лишь варианты первой выборки, поэтому ряд не закончен. Нулевая гипотеза состоит в том, что различий между выборками нет (они случайны и потому несущественны). Ранговый тест учитывает общее размещение вариант и размеры выборок, но не требует знания типа распределения. Основной вывод о верности нулевой гипотезы делается на основании анализа минимальной суммы рангов (из двух сумм для сравниваемых выборок), т. е. критерием является величина (учитывая, что )- При этом пользуются специальными таблицами. В частности, если число вариант в выборках одинаково (п1 = п2
), то используется таблица 11.
Таблица 11,Критические значения величины Г (теста Уилкоксона) при п1 = n2 = n для разных значений уровня значимости
п | 0,05 | 0,01 | п | 0,05 | 0,01 | п | 0,05 | 0,01 |
5 | 17 | 15 | 12 | 115 | 105 | 19 | 303 | 283 |
6 | 26 | 23 | 13 | 136 | 125 | 20 | 337 | 315 |
7 | 36 | 32 | 14 | 160 | 147 | 21 | 373 | 349 |
8 | 49 | 43 | 15 | 184 | 171 | 22 | 411 | 386 |
9 | 62 | 56 | 16 | 211 | 196 | 23 | 451 | 424 |
10 | 78 | 71 | 17 | 240 | 223 | 24 | 492 | 464 |
11 | 96 | 87 | 18 | 270 | 252 | 25 | 536 | 505 |
Примечание. Нулевая гипотеза отбрасывается при Т < Т0,05 или Т < Т0,01 .
В этой таблице указаны две входные величины: число вариант в выборках (п) и значение третьего и второго уровней значимости (0 = 0,05 и 0,01). В нашем случае , что меньше табличного значения для п = 13 и 0 < 0,01. Следовательно, на втором уровне значимости (р > 0,99) можно отвергнуть нулевую гипотезу. Таким образом, различия выборок достоверны с вероятностью, превышающей 0,99.
§ 3.4. Корреляционная зависимость. Уравнения регрессии
Функциональные зависимости достаточно хорошо знакомы читателю. Часто эти зависимости можно выразить аналитически. Например, площадь круга зависит от радиуса (S = r2), ускорение тела — от силы и массы (а = F/m0) и т. д.
При изучении объектов в биологии и медицине приходится иметь дело с функциональными связями другого рода. При этом определенному значению одного признака соответствует не одно значение другого, а целое распределение значений. Такая связь называется корреляционной связью, или просто корреляцией. Корреляционная связь, например, между возрастом и ростом детей выражается в том, что каждому значению возраста соответствует определенное распределение роста (а не одно единственное значение). При этом с увеличением возраста (до определенных пределов) возрастает и среднее значение роста.
Количественную характеристику взаимосвязи изучаемых признаков можно дать на основании вычисления показателя силы связи между ними (коэффициента корреляции) и определения зависимости одного признака от изменений другого (уравнения регрессии). Коэффициент корреляции определяет не только степень, но и направление связей между величинами. Если отсутствие функциональной зависимости между величинами условно соответствует нулевой корреляции, а полная функциональная зависимость — корреляции, равной единице, то сила корреляционной связи, вообще говоря, измеряется промежуточными значениями (от 0 до +1). При этом при положительном коэффициенте корреляции с увеличением одной величины возрастает и другая. Если же коэффициент корреляции отрицателен, то возрастание одного параметра сопровождается уменьшением другого.
В простом случае при линейной зависимости между исследуемыми параметрами используют коэффициент корреляции Бравэ — Пирсона, вычисляемый по формуле:
(3.32)
Здесь п — количество пар анализируемых признаков, —выборочные средние значения в распределениях соответствую