Файл: Купности и их обработки. Такие вопросы рассматриваются в мате матической статистике.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 66

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Используя этот способ оценки достоверности различия выбо­рочных средних значений двух выборок, следует придерживаться такой последовательности действий. Во-первых, по эксперимен­тальным данным нужно найти значения выборочных средних и средних квадратических отклонений для каждой выборки. За­тем, сравнив величины х и у, найти величину f. После этого сле­дует задать определенное значение доверительной вероятности и по таблице 10 найти tтeoр . Затем по формуле (3.30) рассчитать toп.

Если при сравнении теоретического и опытного критериев Стью-дента окажется, что toп > tтeoр, то различие между выборочными средними значениями случайных величин Xи У можно считать существенным с заданной доверительной вероятностью. В проти­воположном случае различия несущественны.

Представленный выше способ оценки достоверности различий выборок по выборочным средним является довольно простым. Су­ществует большое число тестов и критериев для сравнения выбо­рок и составления заключения о достоверности их различий. Как правило, при этом рассматривают вероятность двух взаимоисклю­чающих гипотез. Одна из них, условно называемая «нулевой» ги­потезой, заключается в том, что наблюдаемые различия между вы­борками случайны (т. е. фактически различий нет). Альтернатив­ная гипотеза означает, что наблюдаемые различия статистически достоверны. При этом для оценки обоснованности вывода о досто­верности различий используют три основных доверительных уров­ня, при которых принимается или отвергается нулевая гипотеза. Первый уровень соответствует уровню значимости 0 < 0,05; для второго уровня 0 < 0,01. Наконец, третий доверительный уровень имеет 0 < 0,001. При соблюдении соответствующего условия ну­левая гипотеза считается отвергнутой. Чем выше доверительный уровень, тем более обоснованным он считается. Фактически значи­мость вывода соответствует вероятности р = 1 - 0. В медицинских и биологических исследованиях считают достаточным уже первый уровень, хотя наиболее ответственные выводы предпочтительнее делать с большей точностью. Одной из методик, позволяющих су­дить о достоверности различий статистических распределений, яв­
ляется ранговый тест Уилкоксона. Под рангом (Ri)понимают но­мер, под которым стоят исходные данные в ранжированном ряду. Если в двух сравниваемых выборках данному номеру соответству­ют одинаковые варианты, то рангом этих вариант является сред­нее арифметическое двух рангов — данного и следующего за ним (см. пример). Покажем, как используется этот тест на примере сравнения двух равных по объему выборок.

*Измеряли массу 13 недоношенных новорожденных (в граммах) в двух районах А и Б большого промышленного центра, один из которых (Б) отличался крайне неблагоприятной экологической обстановкой. По­лучены два статистических распределения (А) и (Б):

А: 970 990 1080 1090 1110 1120 ИЗО 1170 1180 1180 1210 1230 1270

Б: 780 870 900 900 990 1000 1000 1020 1030 1050 1070 1070 1100
Следует решить вопрос о том, достоверны ли различия между этими статистическими распределениями.

Составим общий ранжированный ряд с указанием номеров соответст­вующих вариант (RА.Б) — рангов (строки А и Б соответствуют выборкам):

А: 970990 1080 1090 1110..

RА: 5 6,5 15 16 18
Б: 780 870 900 90,0 990 1000 1000 1020 1030 1050 1070 1070 1100
RБ : 1 2 3 4 6,5 8 9 10 11 12 13 14 17

Как видно, варианта 990 встречается в первой и второй выборках, по­этому для нее рангом является среднее арифметическое значение 6 и 7.

Далее в ряду остаются лишь варианты первой выборки, поэтому ряд не закончен. Нулевая гипотеза состоит в том, что различий между выбор­ками нет (они случайны и потому несущественны). Ранговый тест учиты­вает общее размещение вариант и размеры выборок, но не требует знания типа распределения. Основной вывод о верности нулевой гипотезы дела­ется на основании анализа минимальной суммы рангов (из двух сумм для сравниваемых выборок), т. е. критерием является величина (учитывая, что )- При этом пользуются специальными табли­цами. В частности, если число вариант в выборках одинаково (п1 = п2

), то используется таблица 11.

Таблица 11,Критические значения величины Г (теста Уилкоксона) при п1 = n2 = n для разных значений уровня значимости

п

0,05

0,01

п

0,05

0,01

п

0,05

0,01

5

17

15

12

115

105

19

303

283

6

26

23

13

136

125

20

337

315

7

36

32

14

160

147

21

373

349

8

49

43

15

184

171

22

411

386

9

62

56

16

211

196

23

451

424

10

78

71

17

240

223

24

492

464

11

96

87

18

270

252

25

536

505


Примечание. Нулевая гипотеза отбрасывается при Т < Т0,05 или Т < Т0,01 .

В этой таблице указаны две входные величины: число вариант в вы­борках (п) и значение третьего и второго уровней значимости (0 = 0,05 и 0,01). В нашем случае , что меньше табличного значе­ния для п = 13 и 0 < 0,01. Следовательно, на втором уровне значимости (р > 0,99) можно отвергнуть нулевую гипотезу. Таким образом, различия выборок достоверны с вероятностью, превышающей 0,99.

§ 3.4. Корреляционная зависимость. Уравнения регрессии

Функциональные зависимости достаточно хорошо знакомы чи­тателю. Часто эти зависимости можно выразить аналитически. Например, площадь круга зависит от радиуса (S = r2), ускорение тела — от силы и массы (а = F/m0) и т. д.

При изучении объектов в биологии и медицине приходится иметь дело с функциональными связями другого рода. При этом определенному значению одного признака соответствует не одно значение другого, а целое распределение значений. Такая связь называется корреляционной связью, или просто корреляцией. Корреляционная связь, например, между возрастом и ростом де­тей выражается в том, что каждому значению возраста соответст­вует определенное распределение роста (а не одно единственное значение). При этом с увеличением возраста (до определенных пределов) возрастает и среднее значение роста.

Количественную характеристику взаимосвязи изучаемых при­знаков можно дать на основании вычисления показателя силы связи между ними (коэффициента корреляции) и определения за­висимости одного признака от изменений другого (уравнения рег­рессии). Коэффициент корреляции определяет не только степень, но и направление связей между величинами. Если отсутствие функциональной зависимости между величинами условно соот­ветствует нулевой корреляции, а полная функциональная зависи­мость — корреляции, равной единице, то сила корреляционной связи, вообще говоря, измеряется промежуточными значениями (от 0 до +1). При этом при положительном коэффициенте корре­ляции с увеличением одной величины возрастает и другая. Если же коэффициент корреляции отрицателен, то возрастание одного параметра сопровождается уменьшением другого.

В простом случае при линейной зависимости между исследуе­мыми параметрами используют коэффициент корреляции Бравэ — Пирсона, вычисляемый по формуле:

(3.32)

Здесь п — количество пар анализируемых признаков,выборочные средние значения в распределениях соответствую­