Файл: Купности и их обработки. Такие вопросы рассматриваются в мате матической статистике.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.01.2024
Просмотров: 61
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
щих параметров, — средние квадратические отклонения. Рассчитанный по формуле (3.32) коэффициент корреляции сравнивают с теоретическим, который находят в специальной таблице с учетом определенного уровня значимости и объема выборки (см. табл. 12). Входными значениями таблицы являются число пар исследуемых признаков (п) и уровень значимости (0,05 или 0,01). При этом нулевая гипотеза заключается в том, что корреляционной связи между исследуемыми параметрами не существует. Если получают значения коэффициента корреляции больше табличного, с определенной степенью вероятности полагают, что корреляция в генеральной совокупности отличается от нуля.
Таблица 12.Критические значения выборочного коэффициента корреляции г для двух уровней значимости
Примечание. Нуль целых и запятая в значениях rопущены. Нулевая гипотеза отбрасывается при r > r0 с данным уровнем значимости (0,05 или 0,01).
Покажем на примере, как рассчитывают коэффициент корреляции Бравэ—Пирсона.
*Оценить взаимосвязь частоты пульса Xи максимального артериального давления Y у детей:
Х (удары/мин) 121,8 119,2 111,3 113,3 98,3 93,8
Y(мм.рт.ст) 99,5 103,0 103,1 106,8 99,1 99,2
Согласно нулевой гипотезе, корреляционной связи между изучаемыми параметрами нет. Рассчитаем выборочные средние значения и средние квадратичные отклонения для приведенных выше выборок исследуемых параметров: = 109,6; = 101,8; х= 10,29 и у= 2,81. По формуле (3.32) рассчитываем коэффициент корреляции r= 0,44. Затем обращаемся к таблице 12 и находим для шести пар признаков (п = 6), теоретическое значение коэффициента корреляции 0,811 при уровне значимости 0,05 и 0,917 при уровне значимости 0,01. В том и другом случае нулевая гипотеза оказывается справедливой и корреляционной связи между анализируемыми признаками не существует с вероятностью 0,95 и 0,99.
Количественное представление зависимости изменений одного признака от изменений другого позволяет получить показатели регрессии. Как правило, анализ регрессии начинают с графического изображения данных. При большом числе исходных данных для выявления общей закономерности вычисляются средние значения одного признака (у) в группах (классах), соответствующих определенному интервалу значений другого признака (х). При построении графика по усредненным данным точки на графике располагаются вдоль так называемой эмпирической линии регрессии. Затем проводят подбор и составление уравнения регрессии. С помощью такого уравнения можно теоретически рассчитать значения, которые должен принимать один признак при определенных значениях другого (уравнение прогноза).
Если предполагается существование линейной зависимости между исследуемыми признаками (линейная регрессия), то проводить регрессионный анализ наиболее просто. Часто при этом применяют графический метод. Для проведения линии регрессии
используют прозрачную линейку, придавая ей такое положение, чтобы выше и ниже предполагаемой линии регрессии оказалось приблизительно одинаковое число эмпирических точек. На полученной прямой определяют координаты двух наиболее отдаленных точек x1, ylи х2, у2. Затем составляют систему двух уравнений:
Из полученной системы уравнений определяют неизвестные а и Наконец, при известных коэффициентах а и bзаписывают уравнение прогноза, на основании которого можно рассчитать значение параметра у при известном значении х.
В настоящее время при статистическом анализе экспериментальных данных ироко используются компьютерные вычислительные программы, позволяющие проводить корреляционный и регрессионный анализ. Более подробно практическое применение этого вида анализа рассматривается в курсе социальной гигиены и организации здравоохранения.
Таблица 12.Критические значения выборочного коэффициента корреляции г для двух уровней значимости
п | 0,05 | 0,01 | п | 0,05 | 0,01 | п | 0,01 | 0,01 | п | 0,05 | 0,01 |
4 | 950 | 990 | 15 | 514 | 641 | 26 | 388 | 496 | 80 | 219 | 288 |
5 | 878 | 959 | 16 | 497 | 623 | 27 | 381 | 487 | 90 | 206 | 272 |
6 | 811 | 917 | 17 | 482 | 66 | 28 | 371 | 478 | 100 | 196 | 258 |
7 | 754 | 874 | 18 | 468 | 590 | 29 | 367 | 470 | 125 | 175 | 230 |
8 | 707 | 834 | 19 | 456 | 575 | 33 | 361 | 463 | 150 | 163 | 210 |
9 | 666 | 798 | 20 | 444 | 561 | 35 | 332 | 435 | 200 | 138 | 182 |
10 | 632 | 765 | 21 | 433 | 549 | 40 | 310 | 407 | 250 | 142 | 163 |
11 | 602 | 735 | 22 | 423 | 537 | 45 | 292 | 384 | 300 | 113 | 148 |
12 | 576 | 708 | 23 | 413 | 523 | 50 | 277 | 364 | 400 | 098 | 128 |
13 | 553 | 684 | 24 | 404 | 515 | 60 | 253 | 333 | 500 | 088 | 115 |
14 | 532 | 661 | 25 | 396 | 505 | 70 | 234 | 308 | 1000 | 062 | 081 |
Примечание. Нуль целых и запятая в значениях rопущены. Нулевая гипотеза отбрасывается при r > r0 с данным уровнем значимости (0,05 или 0,01).
Покажем на примере, как рассчитывают коэффициент корреляции Бравэ—Пирсона.
*Оценить взаимосвязь частоты пульса Xи максимального артериального давления Y у детей:
Х (удары/мин) 121,8 119,2 111,3 113,3 98,3 93,8
Y(мм.рт.ст) 99,5 103,0 103,1 106,8 99,1 99,2
Согласно нулевой гипотезе, корреляционной связи между изучаемыми параметрами нет. Рассчитаем выборочные средние значения и средние квадратичные отклонения для приведенных выше выборок исследуемых параметров: = 109,6; = 101,8; х= 10,29 и у= 2,81. По формуле (3.32) рассчитываем коэффициент корреляции r= 0,44. Затем обращаемся к таблице 12 и находим для шести пар признаков (п = 6), теоретическое значение коэффициента корреляции 0,811 при уровне значимости 0,05 и 0,917 при уровне значимости 0,01. В том и другом случае нулевая гипотеза оказывается справедливой и корреляционной связи между анализируемыми признаками не существует с вероятностью 0,95 и 0,99.
Количественное представление зависимости изменений одного признака от изменений другого позволяет получить показатели регрессии. Как правило, анализ регрессии начинают с графического изображения данных. При большом числе исходных данных для выявления общей закономерности вычисляются средние значения одного признака (у) в группах (классах), соответствующих определенному интервалу значений другого признака (х). При построении графика по усредненным данным точки на графике располагаются вдоль так называемой эмпирической линии регрессии. Затем проводят подбор и составление уравнения регрессии. С помощью такого уравнения можно теоретически рассчитать значения, которые должен принимать один признак при определенных значениях другого (уравнение прогноза).
Если предполагается существование линейной зависимости между исследуемыми признаками (линейная регрессия), то проводить регрессионный анализ наиболее просто. Часто при этом применяют графический метод. Для проведения линии регрессии
используют прозрачную линейку, придавая ей такое положение, чтобы выше и ниже предполагаемой линии регрессии оказалось приблизительно одинаковое число эмпирических точек. На полученной прямой определяют координаты двух наиболее отдаленных точек x1, ylи х2, у2. Затем составляют систему двух уравнений:
Из полученной системы уравнений определяют неизвестные а и Наконец, при известных коэффициентах а и bзаписывают уравнение прогноза, на основании которого можно рассчитать значение параметра у при известном значении х.
В настоящее время при статистическом анализе экспериментальных данных ироко используются компьютерные вычислительные программы, позволяющие проводить корреляционный и регрессионный анализ. Более подробно практическое применение этого вида анализа рассматривается в курсе социальной гигиены и организации здравоохранения.