Файл: Купности и их обработки. Такие вопросы рассматриваются в мате матической статистике.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.01.2024
Просмотров: 67
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Элементы математической статистики. Случайная величина. Распределение дискретных и непрерывных случайных величин и их характеристики: математическое ожидание, дисперсия, среднее квадратичное отклонение. Примеры различных законов распределения. Нормальный закон распределения.
Генеральная совокупность и выборка. Гистограмма. Оценка параметров нормального распределения по опытным данным. Доверительные интервалы для средних. Интервальная оценка истинного значения измеряемой величины. Применение распределения Стьюдента для определения доверительных интервалов. Методы обработки медицинских данных.
Теория погрешностей, порядок обработка результатов прямых и косвенных измерений. Понятие о корреляционном анализе.
Математическая статистика
Методы математической статистики позволяют систематизировать и оценивать экспериментальные данные, которые рассматриваются как случайные величины.
§3.1. Основные понятия математической статистики
В главе 2 были рассмотрены некоторые понятия и закономерности, которым подчинены массовые случайные явления. Одной из практических задач, связанных с этим, является создание методов отбора данных (статистические данные) из большой совокупности и их обработки. Такие вопросы рассматриваются в математической статистике.
Математическая статистика — наука о математических методах систематизации и использования статистических данных для решения научных и практических задач.
Математическая статистика тесно примыкает к теории вероятностей и базируется на ее понятиях. Однако главным в математической статистике является не распределение случайных величин, а анализ статистических данных и выяснение, какому распределению они соответствуют.
Предположим, что необходимо изучить множество объектов по какому-либо признаку. Это возможно сделать, либо проведя сплошное наблюдение (исследование, измерение), либо не сплошное, выборочное.
Выборочное, т. е. неполное, обследование может оказаться предпочтительнее по следующим причинам. Во-первых, естест
венно, что обследование части менее трудоемко, чем обследование целого; следовательно, одна из причин — экономическая. Во-вторых, может оказаться и так, что сплошное обследование просто нереально. Для того чтобы его провести, возможно, нужно уничтожить всю исследуемую технику или загубить все исследуемые биологические объекты. Так, например, врач, имплантирующий электроды в улитку для кохлеарного протезирования (см. § 6.5), должен иметь вероятностные представления о расположении улитки слухового аппарата. Казалось бы, наиболее достоверно такие сведения можно было получить при сплошном патологоанатомическом вскрытии всех умерших с производством соответствующих замеров. Однако достаточно собрать нужные сведения при выборочных измерениях.
Большая статистическая совокупность, из которой отбирается часть объектов для исследования, называется генеральной совокупностью, а множество объектов, отобранных из нее, — выборочной совокупностью, или выборкой.
Свойство объектов выборки должно соответствовать свойству объектов генеральной совокупности, или, как принято говорить, выборка должна быть представительной (репрезентативной). Так, например, если целью является изучение состояния здоровья населения большого города, то нельзя воспользоваться выборкой населения, проживающего в одном из районов города. Условия проживания в разных районах могут отличаться (различная влажность, наличие предприятий, жилищных строений и т. п.) и, таким образом, влиять на состояние здоровья. Поэтому выборка должна представлять случайно отобранные объекты.
Если записать в последовательности измерений все значения величины х в выборке, то получим простой статистический ряд. Например, рост мужчин (см): 170, 169, ... . Такой ряд неудобен для анализа, так как в нем нет последовательности возрастания (или убывания) значений, встречаются и повторяющиеся величины. Поэтому целесообразно ранжировать ряд, например, в возрастающем порядке значений и указать их повторяемость. Тогда статистическое распределение выборки:171, 172, 172, 168,
(3.1)
Здесь xi— наблюдаемые значения признака (варианта); ni— число наблюдений варианты xi (частота); рi* — относительная частота.
Общее число объектов в выборке (объем выборки)
всего kвариант. Статистическое распределение — это совокупность вариант и соответствующих им частот (или относительных частот), т. е. это совокупность данных 1-й и 2-й строки или 1-й и 3-й строки в (3.1).
В медицинской литературе статистическое распределение, состоящее из вариант и соответствующих им частот, получило название вариационного ряда.
Наряду с дискретным (точечным) статистическим распределением, которое было описано, используют непрерывное (интервальное) статистическое распределение:
(3.2)
Здесь xi-1, xi - i-йинтервал, в котором заключено количественное значение признака; ni— сумма частот вариант, попавших в этот интервал; р*i— сумма относительных частот.
В качестве примера дискретного статистического распределения укажем массы новорожденных мальчиков (кг) и частоты (табл. 5).
Таблица 5
Общее количество мальчиков (объем выборки)
(3.3)
Можно это распределение представить и как непрерывное (интервальное) (табл. 6).
Таблица 6
2,65 — 2,75 | 2,75 — 2,85 | 2,85 — 2,95 | 2,95 — 3,05 | 3,05 — 3,15 | … |
1 | 2 | | 7 | 8 | … |
Для наглядности статистические распределения изображают графически в виде полигона и гистограммы.
Полигон частот — ломаная линия, отрезки которой соединяют точки с координатами (х1, п1 , (х2; п2), ... или для полигона относительных частот — с координатами (х1; р1* ), (х2; р2 *), ... (рис. 3.1). Рис. 3.1 относится к распределению, представленному в табл. 5.
Гистограмма частот — совокупность смежных прямоугольников, построенных на одной прямой линии (рис. 3.2), основания прямоугольников одинаковы и равны а, а высоты равны отношению частоты (или относительной частоты) к а:
(3.4)
Таким образом, площадь каждого прямоугольника равна соответственно
Следовательно, площадь гистограммы частот , а площадь гистограммы относительных частот
Наиболее распространенными характеристиками статистического распределения являются средние величины: мода, медиана и средняя арифметическая, или выборочная средняя.
Мода (Мо) равна варианте, которой соответствует наибольшая частота. В распределении массы новорожденных (см. табл. 5)
Мо = 3,3 кг.
Медиана (Me) равна варианте, которая расположена в середине статистического распределения. Она делит статистический (вариационный) ряд на две равные части. При четном числе вариант за медиану принимают среднее значение из двух центральных вариант. В рассмотренном распределении (см. табл. 5) Me= 3,4 кг.
Выборочная средняя (хв) определяется как среднее арифметическое значение вариант статистического ряда:
(3.5)
(3.6)
Для примера (см. табл. 5)
Для характеристики рассеяния вариант вокруг своего среднего значения вводят характеристику, называемую выборочной дисперсией, — среднее арифметическое квадратов отклонения вариант от их среднего значения:
(3.7)
Квадратный корень из выборочной дисперсии называют выборочным средним квадратическим отклонением:
(3.8)
Для примера (см. табл. 5)
§ 3.2. Оценка параметров генеральной совокупности по ее выборке
Предположим, что генеральная совокупность является нормальным распределением (здесь вместо вероятности следует использовать относительную частоту). Нормальное распределение полностью определено математическим ожиданием (средним значением) и средним квадратическим отклонением. Поэтому если по выборке можно оценить, т. е. приближенно найти, эти параметры, то будет решена одна из задач математической статистики — определение параметров большого массива по исследованию его части.
Как и для выборки, для генеральной совокупности можно определить генеральную среднюю — среднее арифметическое