Файл: 1. интерференция света основные формулы и законы.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 445

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1. ИНТЕРФЕРЕНЦИЯ СВЕТА Основные формулы и законы • Скорость света в среде где – скорость света в вакууме; n- абсолютный показатель преломления среды.• Оптическая длина пути световой волны где – геометрическая длина пути световой волны в среде с показателем преломления n.• Оптическая разность хода двух световых волн • Зависимость разности фаз от оптической разности хода световых волн где λ0 – длина световой волны в вакууме.• Условие интерференционных максимумов • Условие интерференционных минимумов Координаты максимумов и минимумов интенсивности в опыте Юнга ; ,где m= 0, 1, 2…-номер интерференционной полосы, d – расстояние между двумя когерентными источниками, находящимися на расстоянии L от экрана .• Ширина интерференционной полосы Оптическая разность хода при интерференции в тонких плёнках в проходящем свете: ,в отражённом свете: где d – толщина пленки; n – ее показательпреломления;– угол падения; r – угол преломления. • Радиусы светлых колец Ньютона в отраженном свете (или темных в проходящем свете) где m – номер кольца; R – радиус кривизны линзы.• Радиусы темных колец Ньютона в отраженном свете (или светлых в проходящем свете) • В случае «просветления оптики» интерферирующие лучи в отраженном свете гасят друг друга при условии где nс – показатель преломления стекла; n – показатель преломления пленки.Задания1.1. Расстояние от щелей до экрана в опыте Юнга равно 1 м. Определить расстояние между щелями, если на отрезке длиной 1 см укладывается 10 темных интерференционных полос. Длина волны равна 0,7 мкм.А.0,63 мм В.0,70 мм С.0,07 мм D.0,063 мм.1.2. Две когерентные световые волны приходят в некоторую точку пространства с разностью хода 2,25 мкм. Каков результат интерференции в этой точке, если свет: а) красный (= 750 нм), б) зеленый (= 500 нм)?А.а) усиление; б) ослабление В.а) усиление; б) усилениеС.а) ослабление; б) ослабление D.а) ослабление; б) усиление.1.3. Разность хода двух интерферирующих лучей монохро­мати­ческого света 0,3. Определить разность фаз колебаний.А.108 В.18,84 рад С.1,08 D.3,14 рад.1.4. Расстояние между двумя щелями в опыте Юнга равно 1 мм, расстояние от щелей до экрана 3 м, расстояние между максимумами яркости смежных интерференционных полос на экране 1,5 мм. Определить длину волны источника монохроматического света.А.500 нм В.500 мкм С.0,5 нм D.0,05 мкм.1.5. В опыте Юнга расстояние между щелями равно 1 мм, а расстояние от щелей до экрана равно 3 м. Определить: 1) положение первой светлой полосы; 2) положение третьей темной полосы, если щели освещать монохроматическим светом с длиной волны 0,5 мкм.А.1) 1,5 мм; 2) 5,25 мм В.1) 5,25 мм; 2) 1,5 мм С.1) 0,15 мм; 2) 0,525 мм D.1) 15 мм; 2) 5,25 мм.1.6. Расстояние между двумя щелями в опыте Юнга равно 0,5 мм. Длина волны света равна 0,6 мкм. Определить расстояние от щелей до экрана, если ширина интерференционных полос равна 1,2 мм.А.1 м В.0,1 м С.0,01м D.10 м.1.7. Во сколько раз изменится ширина интерференционных полос на экране в опыте с зеркалами Френеля, если фиолетовый светофильтр (0,4 мкм) заменить красным (0,7 мкм).А.1,75 В.17,5 С.0,175 D.0,0175.1.8. Во сколько раз увеличится расстояние между соседними интерференционными полосами на экране в опыте Юнга, если зеленый светофильтр (=0,5 мкм) заменить красным (=0,65 мкм)?А.В 1,3 раза В.В 13 раз С.В 0,13 раза D.В 130раз.1.9. В опыте Юнга отверстия освещались монохроматическим светом длиной волны 600 нм, расстояние между отверстиями 1 мм и расстояние от отверстий до экрана 3 м. Найти положение трех первых полос.А.1,8 мм; 3,6 мм; 5,4 мм В.18мм; 36 мм; 54 мм С. 0,18 мм; 0,36 мм; 0,54 мм D.1,8 см; 3,6 см; 5,4 см.1.10. В опыте с зеркалами Френеля расстояние между мнимыми изображениями источника света равно 0,5 мм, расстояние от них до экрана равно 5 м. В желтом свете ширина интерференционных полос равно 6 мм. Определить длину волны света.А.0,6мкм В.0,6 мм С.60 мкм D.60 нм.1.11*. Если в опыте Юнга на пути одного из интерферирующих лучей поместить перпендикулярно этому лучу тонкую стеклянную пластинку (n=1,5), то центральная светлая полоса смещается в положение, первоначально занимаемое пятой светлой полосой. Длина волны света равна 0,5 мкм. 5 мкм1.12*. В опыте Юнга расстояние от щелей до экрана равно 3 м. Определить угловое расстояние между светлыми соседними полосами, если третья светлая полоса на экране отстоит от центра интерференционной картины на 4,5 мм. 5·10ˉ4 рад1.13. На стеклянный клин (n=1,5) с малым углом нормально к его грани падает параллельный пучок лучей монохроматического света с длиной волны 0,698 мкм. Определить угол между поверхностями клина, если расстояние между двумя соседними интерференционными минимумами в отраженном свете равно 2 мм.А.  В.  С.  D. .1.14. На тонкий стеклянный клин (n=1,5) нормально падает монохроматический свет. Угол клина равен . Определить длину световой волны, если расстояние между двумя соседними интерференционными максимумами в отраженном свете равно 0,2 мм.А.698 нм В.1396 нм С.349 нм D.139,6 нм.1.15. На стеклянный клин (n=1,5) падает нормально пучок света с длиной волны 0,582 мкм. Угол клина равен . Какое число темных интерференционных полос приходится на единицу длины клина?А.5 полос на 1 см В.5 полос на 1 мм С.4 полосы на 1 мм D.4 полосы на 1 см.1.16*. Между двумя плоскопараллельными стеклянными пластинками (n=1,5) положили очень тонкую проволочку. Проволочка находится на расстоянии 75 мм от линии соприкосновения пластинок и ей параллельна. В отраженном свете с длиной волны 0,5 мкм на верхней пластинке видны интерференционные полосы. Определить толщину проволочки, если на протяжении 30 мм насчитывается 16 светлых полос. 10 мкм1.17*. Между двумя плоскопараллельными стеклянными пластинками (n=1,5) на расстоянии 10 см от границы их соприкосновения находится проволока диаметром 0,01 мм, образуя воздушный клин. Пластины освещаются нормально падающим светом с длиной волны 0,6 мкм. Определить ширину интерференционных полос, наблюдаемых в отраженном свете. 3 мм1.18*. Монохроматический свет падает нормально на поверхность воздушного клина, причем расстояние между интерференционными полосами равно 0,4 мм. Определите расстояние между интерференционными полосами, если пространство между пластинами, образующими клин, заполнить прозрачной жидкостью с показателем преломления n=1,33. 0,3 мм1.19. Радиус второго темного кольца Ньютона в отраженном свете равен 0,4 мм. Определить радиус кривизны плосковыпуклой линзы, взятой для опыта, если она освещается светом с длиной волны 0,64 мкм.А.125 мм В.1,25 мм С.12,5 мм D.125 см.1.20. Между стеклянной пластинкой и лежащей на ней плосковыпуклой линзой находится жидкость. Найти показатель преломления жидкости, если радиус третьего темного кольца Ньютона при наблюдении в отраженном свете с длиной волны 0,6 мкм равен 0,82 мм. Радиус кривизны линзы равен 0,5 м.А.1,34 В.8,92 С.0,134 D.0,892.1.21. На стеклянную пластинку положена выпуклой стороной плосковыпуклая линза. Сверху линза освещена монохроматическим светом длиной волны 500 нм. Найти радиус кривизны линзы, если радиус четвертого темного кольца Ньютона в отраженном свете равен 2 мм.А.2 м В.0,02 м С.0,2 м D.1 м.1.22. Плосковыпуклая стеклянная линза (n=1,5) с фокусом 1 м лежит выпуклой стороной на стеклянной пластинке. Радиус пятого темного кольца Ньютона в отраженном свете равен 1,1 мм. Определить длину световой волны.А.0,484 мкм В.0,242 мкм С.48,4 нм D.613 нм.1.23. Установка для наблюдения колец Ньютона освещается нормально падающим монохроматическим светом с длиной волны 600 нм. Определить толщину воздушного промежутка в том месте, где в отраженном свете наблюдается первое светлое кольцо.А.0,15 мкм В.0,15 мм С.1,5 мкм D.1,5 мм.1.24. Расстояние между вторым и первым кольцами Ньютона в отраженном свете равно 1 мм. Определить расстояние между десятым и девятым.А.0,39 мм В.0,039 мм С.0,78 мм D.0,078 мм.1.25. Диаметр второго светлого кольца Ньютона при наблюдении в отраженном свете с длиной волны 0,6мкм равен 1,2 мм. Определить оптическую силу плосковыпуклой линзы, взятой для опыта.А.1,25 дптр В.0,125 дптр С.12,5 дптр D.0,0125 дптр.1.26. Плосковыпуклая линза с оптической силой 2 дптр выпуклой стороной лежит на стеклянной пластинке. Радиус четвертого темного кольца Ньютона в отраженном свете равен 0,7 мм. Определить длину световой волны.А.0,49 мкм В.4,9 мкм С.49 нм D.049 нм.1.27. Плосковыпуклая линза радиусом кривизны 4 м выпуклой стороной лежит на стеклянной пластинке. Определить длину волны падающего монохроматического света, если радиус пятого светлого кольца в отраженном свете равен 3 мм.А.0,5 мкм В.5,0 мкм С.50 нм D.0,5 нм.1.28. Установка для наблюдения колец Ньютона освещается нормально падающим монохроматическим светом с длиной волны 550 нм. Определить толщину воздушного промежутка в том месте, где в отраженном свете наблюдается четвертое темное кольцо.А.1,1 мкм В.1,1 нм С.11 мкм D.11 нм.1.29. Установка для наблюдения колец Ньютона освещается нормально падающим монохроматическим светом с длиной волны 600 нм. Пространство между линзой и стеклянной пластинкой заполнено жидкостью, и наблюдение ведется в проходящем свете. Радиус кривизны линзы равен 4 м. Определить показатель преломления жидкости, если радиус второго светлого кольца равен 1,8 мм.А.1,48 В.1,11 С.1,21 D.1,31.1.30. Плосковыпуклая линза с показателем преломления n=1,6 выпуклой стороной лежит на стеклянной пластинке. Радиус третьего светлого кольца в отраженном свете с длиной волны 0,6 мкм равен 0,9 мм. Определить фокусное расстояние линзы.А.0,9 м В.9 м С.0,09 м D.9 мм.1.31. Плосковыпуклая линза с радиусом сферической поверхности 12,5 см прижата к стеклянной пластинке. Диаметр десятого темного кольца Ньютона в отраженном свете равен 1 мм. Определите длину волны света.А.0,2 мкм В.0,2 нм С.2 нм D.20 мкм.1.32. Установка для наблюдения колец Ньютона освещается монохроматическим светом, падающим нормально. При заполнении пространства между линзой и стеклянной пластинкой прозрачной жидкостью радиусы темных колец в отраженном свете уменьшились в 1,21 раза. Определить показатель преломления жидкости.А.1,46 В.1,26 С.1,36 D.1,56.1.33*. Найти радиус центрального темного пятна колец Ньютона, если между линзой и пластинкой налит бензол (n=1,5). Радиус кривизны линзы равен 1 м. Показатели преломления линзы и пластинки одинаковы. Наблюдение ведется в отраженном свете с длиной волны 589 нм. 0,63 мм1.34. На мыльную пленку с показателем преломления n=1,33 падает по нормали монохроматический свет с длиной волны 0,6 мкм. Отраженный свет в результате интерференции имеет наибольшую яркость. Какова возможная наименьшая толщина пленки?А.0,113 мкм В.0,113 нм С.1,13 мкм D.1,13 нм.1.35. На тонкую пленку в направлении нормали к ее поверхности падает монохроматический свет с длиной волны 500 нм. Отраженный от нее свет максимально усилен вследствие интерференции. Определить минимальную толщину пленки, если показатель преломления материала пленки равен 1,4.А.89 нм В.8,9 нм С.0,89 мкм D.89 мкм.1.36. На тонкую глицериновую пленку толщиной 1,5 мкм нормально к ее поверхности падает белый свет. Определить число длин волн лучей видимого участка спектра (0,4 ≤ λ ≤ 0,8 мкм), которые будут ослаблены в результате интерференции в проходящем свете. Показатель преломления глицерина равен 1,47.А.5 В.6 С.7 D.4.1.37. На стеклянную пластинку нанесен тонкий слой прозрачного вещества с показателем преломления n=1,3. Пластинка освещена параллельным пучком монохроматического света с длиной волны 640 нм, падающим на пластинку нормально. Какую минимальную толщину должен иметь слой, чтобы отраженный пучок имел наименьшую яркость?А.0,123 мкм В.1,23 мкм С.12,3 мкм D.123 мкм.1.38. Пучок параллельных лучей с длиной волны 0,6 мкм падает под углом 30˚ на мыльную пленку с показателем преломления n=1,33. При какой возможной наименьшей толщине пленки отраженные лучи будут максимально ослаблены интерференцией? Максимально усилены?А.0,243 мкм; 0,122 мкм В.0,122 мкм; 0,243 мкмС.2,43 мкм; 1,22 мкм D.1,22 мкм; 2,43 мкм.1.39. Пучок белого света падает нормально на стеклянную пластинку, толщина которой равна 0,4 мкм. Показатель преломления стекла равен 1,5. Какие длины волн, лежащие в пределах видимого спектра (0,4 ≤ λ ≤ 0,7 мкм), усиливаются в отраженном пучке?А.0,48 мкм В.4,8 мкм С.48 мкм D.480 мкм.1.40. На мыльную пленку с показателем преломления n=1,33 падает белый свет под углом 45˚. При какой наименьшей толщине пленки отраженные лучи будут окрашены в желтый цвет?А.0,13 мкм В.1,3 мкм С.13 мкм D.13 нм.1.41*. Темной или светлой будет в отраженном свете мыльная пленка толщиной d = 0,1λ? Пленка находится в воздухе, показатель преломления пленки равен 1,3. Считать, что пучок света падает на пленку нормально. темной1.42*. Зимой на стеклах трамваев и автобусов образуются тонкие пленки наледи, окрашивающие все видимое сквозь них в зеленоватый цвет. Оценить, какова наименьшая толщина этих пленок (показатель преломления наледи принять равным 1,33). 

Основные формулы и законы

Задания

Задания4.1. Определите радиусы первых трех стационарных орбит в атоме водорода.А. [0,53∙10-10 м; 2,12∙10-10 м; 4,77∙10-10 м]B. [4,77∙10-10 м; 0,53∙10-10 м; 2,12∙10-10 м]C. [0,53∙10-10 м; 4,77∙10-10 м; 2,12∙10-10 м]D. [2,12∙10-10 м; 0,53∙10-10 м; 0,75∙10-10 м]4.2. Определите скорости электрона на первых трех стационарных орбитах.A. [2,19∙106 м/c; 1,1∙106 м/c; 0,73∙106 м/c] B. [3,1∙106 м/c; 5,2∙106 м/c; 7,3∙106 м/c]C. [0,1∙106 м/c; 0,3∙106 м/c; 0,5∙106 м/c]D. [1,0∙106 м/c; 0,7∙106 м/c; 0,4∙106 м/c]4.3. Определите период обращения электрона на первой стационарной орбите в атоме водорода.A. [1,43∙10-16 c] B. [2,86∙10-16 c]C. [4,86∙10-16 c] D. [5,86∙10-16 c]4.4. Определите угловую скорость электрона на первой стационарной орбите в атоме водорода.A. [4,4∙1016 рад/c] B. [5,6∙1016 рад/c]C. [6,7∙1016 рад/c] D. [7,8∙1016 рад/c]4.5. Определите кинетическую, потенциальную и полную энергии электрона на первой стационарной орбите в атоме водорода.A. [21,76∙10-19 Дж; - 43,52∙10-19 Дж; - 21,76∙10-19 Дж]B. [- 21,76∙10-19 Дж; 43,52∙10-19 Дж; 21,76∙10-19 Дж]C. [31,76∙10-19 Дж; 41,75∙10-19 Дж; 53,76∙10-19 Дж]D. [21,76∙10-19 Дж; 43,52∙10-19 Дж; 21,76∙10-19 Дж]4.6. Определите наибольшую и наименьшую длины волн в серии Лаймана.A. [121,6 нм; 91,2 нм] В. [102,6 нм; 91,2 нм]C. [656,3 нм; 102,6 нм] D. [434,0 нм; 121,6 нм]4.7. Определите наибольшую и наименьшую частоты волн в серии Бальмера.A. [0,82∙1015 Гц; 0,45∙1015 Гц] В. [3,29∙1015 Гц; 2,46∙1015 Гц]C. [3,29∙1015 Гц; 0,82∙1015 Гц] D. [2,46∙1015 Гц; 0,82∙1015 Гц]4.8. Определите потенциал ионизации и первый потенциал возбуждения атома водорода.A. [13,6 В; 10,2 В] В. [10,2 В; 13,6 В]C. [21,1 В; 15,3 В] D. [27,2 В; 20,4 В]4.9. Максимальная длина волны спектральной линии в серии Лаймана равна 0,122 мкм. Полагая, что постоянная Ридберга неизвестна, определите максимальную длину волны в серии Бальмера.A. [0,656 мкм] В. [0,852 мкм] С. [0,102 мкм] D. [0,486 мкм]4.10. 1). Какую наименьшую энергию (в электронвольтах) должны иметь электроны, чтобы при возбуждении атомов водорода ударами этих электронов появились все линии всех серий спектра водорода?2). Какую наименьшую скорость должны иметь эти электроны?A. [13,6 эВ; 2,2 ∙106 м/с] В. [10,2 эВ; 1,8 ∙106 м/с]С. [27,2 эВ; 3,1 ∙106 м/с] D. [10,2 эВ; 2,2 ∙106 м/с]4.11*. Используя теорию Бора, определите орбитальный магнитный момент электрона, движущегося по первой орбите атома водорода.A. [0,93∙10-23 А∙м2] В. [2,8∙10-23 А∙м2] С. [1,8∙10-23 А∙м2] D. [0,45∙10-23 А∙м2]4.12. Предполагая, что в опыте Франка и Герца вакуумная трубка наполнена не парами ртути, а разреженным атомарным водородом, определите, через какие интервалы ускоряющего потенциала возникнут максимумы на графике зависимости силы анодного тока от ускоряющего потенциала.A. [10,2 В] В. [4,9 В] C. [13,6 В] D. [9,8 В]4.13*. Атомарный водород освещается ультрафиолетовым излучением с длиной волны 100 нм. Определите, какие спектральные линии появятся в спектре излучения атомарного водорода.A. [λ1,2 = 121,6 нм; λ 1,3 = 102,6 нм; λ 2,3 = 656,3 нм]В. [λ 2,3 = 656,3 нм; λ 2,4 = 486 нм; λ 2,5 = 434 нм]С. [λ 1,2= 121,6 нм; λ 2,3= 656,3 нм; λ 2,4 = 486 нм]D. [λ 1,2 = 121,6 нм; λ 1,3 = 102,6 нм; λ 2,4 = 486 нм]4.14. В спектре излучения атомарного водорода интервал между двумя линиями, принадлежащими серии Бальмера, составляет 1,71∙10-7 м. Определите с помощью этой величины постоянную Ридберга.4.15. Основываясь на том, что энергия ионизации атома водорода равна 13,6 эВ, определите в электронвольтах энергию фотона, соответствующую самой длинноволновой линии серии Пашена.A. [0,48 эВ] В. [1,89 эВ] C. [10,2 эВ] D. [6,31 эВ]4.2. Элементы квантовой механикиОсновные формулы и законы Длина волны де Бройля , где – постоянная Планка,p– импульс частицы. Связь импульса частицы с кинетической энергией Т ,гдеm – масса частицы. При малых скоростях . Соотношение неопределенностей Гейзенберга ,где , - соответственно неопределенности координаты, импульса, энергии и времени, ħ=h/ . Нестационарное уравнение Шредингера . Уравнение Шредингера для стационарных состояний , где – волновая функция микрочастицы, - полная энергия микрочастицы, = - потенциальная энергия частицы, - пространственная координата ( = ), t – время,∆ = - оператор Лапласа (записан в декартовых координатах), m – масса микрочастицы, ћ – постоянная Планка, = - мнимая единица. Одномерное уравнение Шредингера для стационарных состояний . Условие нормировки волновой функции . Плотность вероятности , где dW(x) –вероятность того, что частица может быть обнаружена вблизи точки с координатой х на участке dх. Вероятность обнаружения частицы в интервале от х1 до х2 . Решение уравнения Шредингера для одномерного, бесконечно глубокого, прямоугольного потенциального ящика шириной (0 ≥ x ≥ ) (собственная нормированная волновая функция) (собственное значение энергии), где n – главное квантовое число ( n = 1, 2, 3,…). В области 0 ≥ x ≥ = ∞ и = 0. Коэффициент прозрачности прямоугольного потенциального барьера ,где - коэффициент прозрачности барьера (коэффициент прохождения). Энергия квантового осциллятора , где n – главное квантовое число ( n = 0, 1, 2,…), - циклическая чачтота. Для частиц с целочисленными спинами (бозонов) справедлива статистика Бозе-Эйнштейна, а для частиц с полуцелыми спинами (фермионов) справедлива статистика Ферми-Дирака. Обобщенное уравнение для квантовых статистик ,где - среднее число частиц в состоянии с номером , Ei - энергия частицы в этом состоянии; μ – так называемый химический потенциал, определяемый из условия = Ni, т. е. сумма всех частиц равна полному числу N частиц в системе, знак минус (-) перед единицей в знаменателе соответствует статистике бозонов (распределению Бозе-Эйнштейна, а знак плюс (+) соответствует статистике фермионов (распределению Ферми -Дирака).Задания4.16. Вычислите длину волны де Бройля для протона, прошедшего разность потенциалов U = 10 В.A. [9,1 пм] В. [91 пм] С. [0,91 пм] D. [4,55 нм]4.17. При какой скорости электрона дебройлевская длина волны будет равна: а) 500 нм; б) 0,1 нм? (В случае электромагнитных волн первая длина волны соответствует видимой части спектра, вторая – рентгеновским лучам).A. [1,46 ∙103 м/с; 0,73 ∙107 м/с] В. [0,73 ∙103 м/с; 1,46∙107 м/с]С. [2,92 ∙103 м/с; 1,46 ∙107 м/с] D. [1,46 ∙107 м/с; 2,92 ∙103 м/с]4.18. Кинетическая энергия электрона равна удвоенному значению его энергии покоя. Вычислите длину волны де Бройля для такого электрона.A. [86 пм] В. [43 пм] С. [172 пм] D. [344 пм]4.19. На грань кристалла никеля падает под углом 64о к поверхности грани параллельный пучок электронов, движущихся с одинаковой скоростью. Принимая расстояние между атомными плоскостями кристалла равным 200 пм, определите скорость электронов, если они испытывают дифракционное отражение первого порядка.A. [2 Мм/с] В. [1 Мм/с] С. [0,5 Мм/с] [4 Мм/с]4.20. Скорость протона составляет (8,880 ± 0,012)∙105 м/с. С какой максимальной точностью можно измерить его положение?A. [13 пм] В. [26 пм] С. [65 пм] D. [40 пм]4.21. Исходя из того, что радиус атома имеет величину порядка 0,1 нм, оцените скорость движения электрона в атоме водорода.A. [∆ = 5,8 ∙105 м/с; 106 м/с] В. [∆ = 5,8 ∙106 м/с; 107 м/с]С. [∆ = 5,8 ∙104 м/с; 105 м/с] D. [∆ = 11,6 ∙106 м/с;

4.37. От каких квантовых чисел зависят соответственно радиальная и сферическая функции, входящие в волновую функцию связанных состояний атома водорода?А. [n, ; ,m] B. [n,m; ,ms] C. [n, ms; ,n]



А. [400] В. [700] С. [800] D. [600]

2.19. На дифракционную решетку с периодом 0,004 мм падает нормально монохроматический свет. При этом главному максимуму четвертого порядка соответствует отклонение от первоначального направления на  = 30°. Определить длину волны света.

А. [0,5 мкм] В. [0,7 мкм] С. [0,8 мкм] D. [0,4 мкм]

2.20. Длина волны красной линии кадмия равна 6438 Å. Каков угол отклонения линии в спектре первого порядка, если дифракционная решетка имеет 5684 штриха на 1 см? Сколько добавочных минимумов образуется между соседними главными максимумами? Ширина решетки
5 см.

А. [21°28, 28419] В. [41°28, 38419]

С. [31°28, 38419] D. [45°28, 28419]

2.21 Монохроматический свет ( = 0,6 мкм) падает нормально на дифракционную решетку, содержащую 400 штрихов на 1 мм. Определить угол отклонения, соответствующий максимуму наивысшего порядка. Найти общее число дифракционных максимумов, которые дает эта решетка.

А. [90°; 9] В. [45°; 5] С. [60°; 6] D. [30°; 3]

2


Рис. 1
.22.
На дифракционную решетку Д нормально к ее поверхности падает параллельный пучок лучей ( = 0,5 мкм). Помещенная вблизи решетки линза L проектирует дифракционную картину на плоский экран Э, удаленный от линзы на = 1 м (рис. 1). Расстояние между двумя максимумами первого порядка, наблюдаемыми на экране, s = 20,2 см. Определить: а) постоянную дифракционной решетки; б) число штрихов на 1 см; в) теоретически возможное число максимумов, которые способна дать решетка; г) угол отклонения лучей, соответствующий последнему дифракционному максимуму.

A. [а) 4,95 мкм; б) 2020 см-1; в) 19; г) 65°24]

B. [а) 5,95 мкм; б) 3020 мм-1; в) 19; г) 45°24]

C. [а) 6,95 мкм; б) 2020 мм-1; в) 19; г) 35°24]

D. [а) 4,95 мкм; б) 2020 см-1; в) 19; г) 75°24]

2.23. На дифракционную решетку нормально падает монохроматический свет с длиной волны 0,5 мкм. На экран, находящийся от решетки на расстоянии 1 м, с помощью линзы, расположенной вблизи решетки, проецируется дифракционная картина, причем первый главный максимум наблюдается на расстоянии 15 см от центрального. Определите число штрихов на 1 см дифракционной решетки.

А. [3103 см-1] В. [2103 см-1] С. [4103 см-1] D. [5103 см-1]

2.24. На дифракционную решетку нормально к ее поверхности падает монохроматический свет с длиной волны 550 нм. На экран, находящийся от решетки на расстоянии 1 м, с помощью линзы, расположен­ной вблизи решетки, проецируется дифракционная кар­тина, причем первый главный максимум наблюдается на расстоянии 12 см от центрального. Определить: 1) период дифракционной решетки; 2) число штрихов на 1 см ее длины; 3)
общее число максимумов, даваемых решеткой; 4) угол дифракции, соответствующий последнему максимуму.

A. [1) 4,58 мкм; 2) 2,18103 см-1; 3) 17; 4) 73,9°]

B. [1) 5,58 мкм; 2) 2,18103 см-1; 3) 27; 4) 83,9°]

C. [1) 3,58 мкм; 2) 2,18103 см-1; 3) 10; 4) 63,9°]

D. [1) 4,58 мкм; 2) 2,18103 см-1; 3) 12; 4) 63,9°]

2.25. На дифракционную решетку падает нормально свет. При этом максимум второго порядка для линии (1 = 0,65 мкм) соответствует углу 1 = 45°. Найти угол, соответствующий максимуму третьего порядка для линии 2 = 0,50 мкм.

А. [54°40] В. [74°40] С. [64°40] D. [44°40]

2.26. Имеется дифракционная решетка с 500 штрихами на 1 мм, освещаемая фиолетовым светом ( = 0,4 мкм). Определить угловое расстояние между максимумами первого порядка.

А. [23°6] В. [33°6] С. [13°6] D. [43°6]

2.27. Определите длину волны монохроматического света, падающего нормально на дифракционную решетку, имеющую 300 штрихов на 1 мм, если угол между направлениями на максимумы первого и второго порядков составляет 12°.

А. [644 нм] В. [544 нм] С. [744 нм] D. [444 нм]

2.28. Дифракционная решетка, имеющая 500 штрихов на 1 мм, дает на экране, отстоящем от линзы на 1 м, спектр. Определить, на каком расстоянии друг от друга будут находиться фиолетовые границы
( = 0,435 мкм) спектров второго порядка.

А. [0,87 м] В. [0,57 м] С. [0,43 м] D. [0,11 м]

2.29. На решетку с постоянной 0,006 мм нормально падает монохроматический свет. Угол между соседними спектрами первого и второго порядков  = 4°36'. Определить длину световой волны. При решении использовать приближенное равенство sin  .

А. [0,48 мкм] В. [0,58 мкм] С. [0,68 мкм] D. [0,72 мкм]

2.30. Найти наибольший порядок дифракционного спектра желтой линии натрия ( = 5890 Å) в дифракционной решетке, содержащей 200 штрихов на 1 мм.

А. [8] В. [18] С. [3] D. [10]

2.31. При освещении дифракционной решетки белым светом спектры второго и третьего порядков отчасти накладываются друг на друга. На какую длину волны в спектре второго порядка накладывается фиолетовая граница ( = 0,4 мкм) спектра третьего порядка?

А. [0,6 мкм] В. [0,5 мкм] С. [0,7 мкм] D. [0,4 мкм]

2.32. На дифракционную решетку нормально падает пучок света от газоразрядной трубки, наполненной гелием. На какую линию в спектре четвертого порядка накладывается красная линия гелия (кр = 6,710-5 см) спектра третьего порядка?

А. [5,0210-5 см] В. [7,0210-5 см] С. [6,0210-5 см] D. [4,0210-5 см]

2.33. Дифракционная решетка длиной

5 мм может разрешить в первом порядке две спектральные линии натрия (1= 589,0 нм и 2= 589,6 нм). Определить, под каким углом  в спектре третьего по­рядка будет наблюдаться свет с 3= 600 нм, падающий на решетку нормально.

А. [ = 20°42'] В. [ = 40°42'] С. [ = 30°42'] D. [ = 60°42']

2.34. Монохроматический свет нормально падает на дифракционную решетку. Определите угол дифракции, соответствующий максимуму четвертого порядка, если максимум третьего порядка отклонен на 1= 18°.

А. [24°20'] В. [44°20'] С. [34°20'] D. [64°20']

2.35. Определите постоянную дифракционной решетки, если она в первом порядке разрешает две спектральные линии калия (1 = 578 нм и 2= 580 нм). Длина решетки 1 см.

А. [34,6 мкм] В. [24,6 мкм] С. [14,6 мкм] D. [44,6 мкм]

2.36. Постоянная дифракционной решетки длиной 2,5 см равна 5 мкм. Определите разность длин волн, разрешаемую этой решеткой, для света с длиной волны  = 0,5 мкм в спектре второго порядка.

А. [50 пм] В. [20 пм] С. [60 пм] D. [30 пм]

2.37. Две дифракционные решетки имеют одинаковую ширину 3 мм, но разные периоды: d1 = 310-3 мм и d2=610-3 мм. Определить их наибольшую разрешающую способность для желтой линии натрия с длиной волны 5896 Å.

А. [5000; 5000] В. [5000; 6000]

С. [6000; 5000] D. [3000; 6000]

2.38. Дифракционная решетка имеет 1000 штрихов и постоянную 10 мкм. Определите: 1) угловую дисперсию для угла дифракции 30° в спектре третьего порядка; 2) разрешающую способность дифракционной решетки в спектре пятого порядка.

А. [1) 3,46105 рад/м; 2) 5000] В. [1) 8,46105 рад/м; 2) 4000]

С. [1) 6,46105 рад/м; 2) 6000] D. [1) 7,46105 рад/м; 2) 3000]

2.39. Определите длину волны, для которой дифракционная решетка с постоянной 3 мкм в спект­ре второго порядка имеет угловую дисперсию 7105 рад/м.

А. [457 нм] В. [570 нм] С. [657 нм] D. [470 нм]

2.40. Угловая дисперсия дифракционной решетки для  = 500 нм в спектре второго порядка равна 4,08105 рад/м. Определите постоянную дифракционной решетки.

А. [5 мкм] В. [15 мкм] С. [9 мкм] D. [12 мкм]

2.41. Определить угловую дисперсию дифракционной решетки для
 = 5890 Å в спектре первого порядка. Постоянная решетки 2,510-4 см.

А. [4,16105 рад/м] В. [4,16 рад/м]

С. [9,16105 рад/м] D. [4,16102 рад/м]

2.42. Под углом = 30° наблюдается четвертый максимум для красной линии кадмия (кр = 0,644 мкм). Определить постоянную дифракционной решетки и ее ширину, если она позволяет в усло­виях задачи различить  = 0,322 нм.

А. [5,15 мкм; 3,57 мм] В. [15 мкм; 3,57 мм]


С. [8,15 мкм; 8,57 мм] D. [10 мкм; 6,57 мм]

2.43. Длины волн дублета желтой линии в спектре натрия равны 5889,95 и 5895,92 Å. Какую ширину должна иметь решетка, со­держащая 600 штрихов на 1 мм, чтобы различить эти линии в спек­тре первого порядка?

А. [1,65 мм] В. [2,65 мм] С. [16,5 мм] D. [4,65 мм]

2.44. Рентгеновское излучение с длиной волны  = 1,63 Å падает на кристалл каменной соли. Найти межплоскостное расстояние кристал­лической решетки каменной соли, если дифракционный максимум первого порядка наблюдается при угле скольжения 17°.

А. [2,79 Å] В. [4,79 Å] С. [3,79 Å] D. [5,79 Å]

2.45. Рентгеновское излучение с длиной волны 2 Å падает на монокристалл. Чему равен угол скольжения, если в спектре второго порядка получен максимум? Межплоскостное расстояние кристаллической решетки 0,3 нм.

А. [41°49] В. [71°49] С. [61°49] D. [81°49]

2.46. 1) Определить угол полной поляризации отраженного света для воды (n = 1,33), стекла (n =1,6) и алмаза (n = 2,42). 2) Как поляризован падающий луч, если в этом слу­чае отраженные лучи отсутствуют?

A. [1) воды=53°, стекла=58°, алмаза=67°30 2) плоско поляризован]

B. [1) воды=63°, стекла=68°, алмаза=77°30 2) линейно поляризован]

C. [1) воды=53°, стекла=68°, алмаза=67°30 2) плоско поляризован]

D. [1) воды=53°, стекла=58°, алмаза=68°30 2) линейно поляризован]

2.47. Угол преломления луча в жидкости 35°. Определить показатель преломления жидкости, если известно, что отраженный луч максимально поляризован.


А. [1,4] В. [1,7] С. [1,6] D. [1,5]

2.48. Свет падает под углом полной поляризации на границу раздела двух сред. Какой угол образуют между собой отраженный и преломленный лучи?

А. [90°] В. [60°] С. [45°] D. [30°]

2.49. Предельный угол полного внутреннего отражения для некоторого вещества равен 60°. Чему равен для этого вещества угол полной поляризации? Какова скорость света в этом веществе?

А. [49°6; 2,6108 м/с] В. [49°6; 3,0108 м/с]

С. [59°6; 2,8108 м/с] D. [69°6; 2,6108 м/с]

2.50. Пучок естественного света падает на стекло с показателем преломления 1,73. Определить, при каком угле преломления отраженный от стекла пучок света будет полностью поляризован.

А. [30°] В. [90°] С. [60°] D. [45°]

2.51. Два николя расположены так, что угол между их главными плоскостями составляет  = 60°. 1). Во сколько раз уменьшится интенсивность естественного света при прохождении его через один николь? 2). Во сколько раз уменьшится интенсивность света при прохождении через оба николя? При прохождении каждого из николей потери на отражение и поглощение составляют 5%.

А. [1) 2,1; 2) 9,1] В. [1) 5,1; 2) 7,1] С. [1) 3,1; 2) 8,1] D. [1) 4,1; 2) 4,1]

2.52. Чему равен угол между главными плоскостями поляризатора и анализатора, если интенсивность естественного света, прошедшего через эти призмы, уменьшилась в 4 раза? Поглощением света пренебречь.

А. [45°] В. [30°] С. [90°] D. [60°]

2.53. Главные плоскости двух призм Николя, поставленных на пути луча, образуют между собой угол 60°. Как изменится интенсивность света, прошедшего через эти призмы, если угол между их плоскостями поляризации станет равным 30°?

А. [Увеличится в 3 раза] В. [Увеличится в 5 раз]

С. [Уменьшится в 3 раза] D. [Уменьшится в 5 раз]

2.54. Во сколько раз ослабляется естественный свет, проходя через два николя, главные плоскости которых составляют угол 30°, если в каждом из николей на отражение и поглощение теряется 10% падающего на него светового потока?

А. [3,3] В. [6,6] С. [5,5] D. [9,3]

2.55. Между двумя скрещенными поляроидами размещается тре­тий поляроид так, что его главная плоскость составляет угол 45° с главной плоскостью первого поляроида. Как изменится интенсивность естественного света, проходящего через такое уст­ройство? Поглощением света в поляроидах пренебречь.

А. [Уменьшится в 8 раз] В. [Уменьшится в 4 раза]

С. [Увеличится в 8 раз] D. [Увеличится в 4 раза]

2.56. Пучок естественного света падает на систему из 4 николей, главная плоскость каждого из которых повернута на угол 60° относительно главной плоскости предыдущего николя. Во сколько раз уменьшится интенсивность света проходящего через эту си­стему? Поглощением света пренебречь.