Файл: Лекции 48 (час.) практические занятия 16 час семинарские занятия 0 час лабораторные работы 0 час.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.02.2024

Просмотров: 244

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ (РПУД)

Специальность— 020101.65 - «Химия» г. Владивосток2011Представлены в отдельном файле. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИФедеральное государственное автономное образовательное учреждение высшего профессионального образования«Дальневосточный федеральный университет»(ДВФУ) ШколА ЕСТЕСТВЕННЫХ НАУК ДВФУМАТЕРИАЛЫ ДЛЯ ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВпо дисциплине «Физические методы исследования» Специальность — 020101.65 - «Химия» г. Владивосток2011МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ СА-МОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВСамостоятельная работа по дисциплине «Физические методы исследования» проводится с целью углубления и закрепления полученных в ходе лекционных занятий знаний и приобретение навыков пользования рекомендованной литературой, навыков научного исследования.1. Рекомендации по использованию материалов УМКД УМКД знакомит студентов с предметом, целями, задачами курса «Физи-ческие методы исследования». В УМКД приведены содержание учебной дисциплины, тематический план, планы практических (лабораторных) занятий, указана необходимая ли-тература. В методическом разделе в соответствии с учебной программой сфор-мулированы основные вопросы практических занятий, методические реко-мендации по организации самостоятельной работы, научная и методическая литература, даны задания для контрольных работ и указания по их выполне-нию. Приведен перечень вопросов итогового контроля, а также тестовые за-дания и задания рейтинг-контроля. 2. Рекомендации по работе с учебной и научной литературой При подготовке к практическим занятиям следует использовать в ос-новном учебники и учебные пособия из приведённого списка литературы. Следует четко знать определения, дополнять каждый теоретический вопрос соответствующими примерами.3. Рекомендации по подготовке к практическим занятиям, контроль-ным работам и зачету Самостоятельное изучение дисциплины целесообразно начинать, оз-накомившись с программой дисциплины и требованиями к знаниям и уме-ниям по данной дисциплине. Далее можно переходить к его поэтапному изучению, привлекая для этого материалы лекций и рекомендованную учебную литературу. Изучая дисциплину, необходимо добиться овладения ее основами и научиться применять теоретические знания для решения практических задач. Содержание незнакомых терминов, встретившихся в процессе освоения учебного материала, можно выяснить при помощи справочной литературы или у преподавателя. Следует четко знать определения, принципы, дополнять каждый теоре-тический вопрос соответствующими примерами и графиками. КОНТРОЛЬНЫЕ ЗАДАНИЯ ДЛЯ САМОПРОВЕРКИ Общие вопросы 1. Какие признаки положены в основу деления шкалы электромагнитных волн на диапазоны и каковы особенности оптического диапазона? 2. Как связано волновое число с длиной волны ? 1) n = l; 2) Dn = –Dl/l2; 3) n = с/l; 4) n = 1/l..3. Наибольшая энергия требуется: 1) для возбуждения электронов; 2) для возбуждения колебаний атомов в молекуле; 3) для возбуждения вращений молекулы; 4) для переориентации спинов ядер.4. Каково соотношение между энергиями электронных Ее, колебательных Еu и вращательных Еr состояний молекулы? 1) Еe > Еu > Еr; 2) Еu > Еr > Еe; 3) Еr > Еe > Еu; 4) Еr > Еu > Еe. 5. При рассмотрении спектров какого типа необходимо учитывать принцип Франка-Кондона? 1) ИК-. 2) вращательных. 3) КР-. 4) электронных. 6. В каких областях спектра наблюдаются электронно-колебательно-вращательные, колебательно-вращательные и вращательные спектры? 7. В каких областях спектра проявляются переходы между электронными, колебательными и вращательными состояниями молекул? 1) Колебательные — в ИК-области, вращательные — в УФ-области, элек-тронные — в микроволновой. 2) Колебательные — в микроволновой, электронные — в УФ-области, вращательные — в ИК-области. 3) Колебательные — в ИК-области, вращательные — в микроволновой, электронные — в УФ-области. 4) Колебательные — в УФ-области, электронные — в ИК-области, враща-тельные — в микроволновой. 8. Методы анализа, основанные на измерении поглощенного образцом света, называются: 1) радиометрией; 2) абсорбциометрией; 3) флюориметрией; 4) турбидиметрией.Колебательная спектроскопия 1. Колебательные спектры возникают при взаимодействии вещества : 1) с гамма-излучением; 2) с видимым светом; 3) с радиоволнами 4) с ИК-излучением; 5) с УФ-излучением 2. Инфракрасным спектрам поглощения соответствуют: 1) электронные переходы из основного в возбужденное состояние; 2) колебательные переходы из основного в возбужденное состояние; 3) электронные переходы из возбужденного в основное состояние; 4) вращательные переходы из основного в возбужденное состояние. 3. Частота валентных колебаний: 1) больше чем частота деформационных колебаний; 2) меньше чем частота деформационных колебаний; 3) больше чем частота деформационных колебаний одной и той же группы молекулы; 4) меньше чем частота деформационных колебаний одной и той же группы молекулы.4. Комбинационным рассеянием называется рассеяние света: 1) без изменения частоты; 2) с увеличением частоты; 3) с уменьшением частоты; 4) с изменением частоты. 5. Какие колебания молекулы СО2 проявляются в ИК-спектре, а какие в КР-спектре? 1) Полносимметричное валентное колебание n1 активно в КР-спектре, а деформационное n2 и антисимметричное n3 — в ИК-спектре. 2) Все колебания n1, n2 и n3 активны в ИК- и КР-спектрах. 3) Полносимметричное валентное колебание n1 активно в ИК-спектре, а деформационное n2 и антисимметричное n3 — в КР-спектре. 4) Все колебания n1, n2 и n3 активны только в ИК-спектре. 6. Сколько поступательных, вращательных и колебательных степеней свободы у тетраэдрической молекулы СН4? 1) Поступательных — 3, вращательных — 3, колебательных — 9. 2) Поступательных — 3, вращательных — 2, колебательных — 10. 3) Поступательных — 3, вращательных — 3, колебательных — 3. 4) Поступательных — 3, вращательных — 3, колебательных — 5. 7. Сколько поступательных, вращательных и колебательных степеней свободы у линейной молекулы HCN и угловой — Н2О? Одинаково ли у них число основных частот колебаний?8. Укажите характерные особенности колебательных спектров (ИК- и КР-) приведенных ниже молекул: 1) Cl2; 2) HCl; 3) CO; 4) CF2=CH2 (только валентные колебания двойной связи); 5) СН3СН=СНСН3 (только валентные колебания двойной связи). 9. Отличаются ли энергии диссоциации изотопных молекул, например Н2 и D2? 1) Энергии диссоциации одинаковы. 2) На вопрос ответить нельзя, так как не приведены данные об их частотах колебаний и ангармоничности. 3) Энергия диссоциации у D2 больше, чем у Н2. 4) Энергия диссоциации у Н2 больше, чем у D2.10. Проявляются ли (активны ли) колебания полярных двухатомных молекул (например HСl) в ИК-спектрах и спектрах КР? 1) Проявляются только в ИК-спектрах. 2) Проявляются только в КР-спектрах. 3) Проявляются в ИК-спектрах и в спектрах КР. 4) Не проявляются ни в ИК-спектрах, ни в спектрах КР. 11. Предскажите вид колебательных спектров (ИК- и КР-спектров) для линейной молекулы диоксида углерода и укажите типы колебаний для данной молекулы.12. Какие изменения произойдут в инфракрасном спектре поглощения изопропилового спирта после его обработки хлористым бензоилом?13. Какие изменения произойдут в инфракрасном спектре поглощения изопропилового спирта после его обработки хлористым ацетилом?14. Какие основные изменения произойдут в инфракрасном спектре поглощения циклопентанона после его обработки этиленгликолем в кислой среде?15. Какие характерные различия можно ожидать в инфракрасном спектре поглощения для следующих соединений : а) СН3СН2СН2NH2, (СН3)2СНNH2 и (CH3)3N б) (СН3)2СН–О–СН(СН3), (СН3)3С–О–СН2СН3 и (СН3)3С–О–Н в) (СН3)2СН–ОН и (СН3)2СН–О–СН(СН3)2 г) СНºССН2СН2СН3, СН3СºССН2СН3 и СНºССН(СН3)2 д) СН3СН=СНСН3, СН2=С(СН3)2, СН2=СНСН2СН3 и (СН3)2С=С(СН3)2 е) дипропиламин, анилин и трифениламин. 16. В ИК-спектре молекулы CS2 наблюдаются две основные частоты при 399 и 1552 см–1 , а в КР-спектре — одна при 671 см–1. На основании этих данных укажите, какова геометрия молекулы сероуглерода и какие колебания проявляются ( активны ) в ИК-спектре.17. Молекула ацетилена в основном состоянии имеет линейное строение, а в возбужденном состоянии принимает нелинейную транс-конфигурацию. Оди-наково ли число основных частот колебаний этих двух состояний?18. В инфракрасном спектре поглощения (2-оксиэтил)-циклопентадиена, полученном в тонком слое, имеется широкая полоса поглощения в области 3600–3100 см–1. При записи спектра в разбавленном ( 0,01 М ) растворе в четыреххлористом углероде широкая полоса исчезает и вместо нее появляется узкий пик при 3600 см–1. Объясните данные различия в инфракрасных спектрах поглощения.19. Молекула ацетилена в основном состоянии имеет линейное строение, а в возбужденном состоянии принимает нелинейную транс-конфигурацию. Одинаково ли число основных частот колебаний этих двух состояний?20. Максимум полосы поглощения ОН-группы о-нитрофенола в ИК-спектре, полученном в таблетке KBr или в разбавленном растворе CHCl3, имеет одну и туже частоту — 3200 см–1, а в случае n-нитрофенола частоты максимума разные и равны соответственно 3325 и 3530 см–1. Дайте объяснение.Электронная спектроскопия 1. Спектрам поглощения в ультрафиолетовой области спектра соответствуют: 1) электронные переходы из основного в возбужденное состояние; 2) колебательные переходы из основного в возбужденное состояние; 3) электронные переходы из возбужденного в основное состояние; 4) вращательные переходы из основного в возбужденное состояние.2. Электронные переходы в молекулах проявляются в ультрафиолетовой и видимой областях спектра примерно от 100 до 1000 нм. Какова энергия этих переходов в см–1? 1) 10 – 100; 2) 100 – 1000; 3) 10000 – 100000; 4) 10 – 100000. 3. Электронные спектры возникают при взаимодействии вещества: 1) с гамма-излучением; 2) с видимым светом ; 3) с радиоволнами ; 4) с ИК-излучением ; 5) с УФ-излучением. 4. Какие электронные переходы запрещены по спину: 1) синглет-синглетные ; 2) синглет-триплетные ; 3) триплет-триплетные ; 4) для электронных переходов нет запрета по спину.5. Какова мультиплетность электронного состояния молекулы, при котором спины двух электронов параллельны: 1) 1/2 ; 2) 1 ; 3) 2 ; 4) 3. 6. Среди приведенных ниже групп найдите ауксохромы: 1) С=С–С=О; 2) С=С–С=С; 3) –NH2; 4) C=C; 5) C=O; 6) –OH.7. Увеличение цепи сопряжения полиенов приводит в УФ-спектре к : 1) батохромному сдвигу и гипохромному эффекту; 2) батохромному сдвигу и гиперхромному эффекту; 3) гипсохромному сдвигу и гипохромному эффекту; 4) гипсохромному сдвигу и гиперхромному эффекту. 8. Видимый свет представляет собой электромагнитное излучение, занимающее интервал спектра от 400 до 800 нм. Объясните, почему многие вещества имеющие максимум поглощения ниже 400 нм интенсивно окрашены. 9. Электронные спектры поглощения бутанона-2 и бутен-3-она-2 в области 220–350 нм имеют один максимум: при 270 нм (e » 17) — спектр А и при 315 нм (e » 28) — спектр Б. Какому веществу принадлежит каждый спектр?10. В электронном спектре поглощения трифениламина имеется полоса при 227 нм в нейтральном растворе. Объясните, почему данная полоса исчезает в кислом растворе. 11. Можно ли по электронным спектрам поглощения контролировать течение следующих реакций : а) диеновой конденсации; б) альдольной конденсации; в) азосочетания; г) образования ацеталей; д) гидрирования аренов. 12. Оптическая плотность водного раствора соединения Х при l = 250 нм составляет 0,542 при концентрации 0,1 моль/л в кювете с толщиной поглощающего слоя 1 см. Коэффициент поглощения соединения Х равен 9000. Известно, что Х реагирует по уравнению: X = Y + Z. Найдите константу равновесия этой реакции, если известно что соединения Y и Z не поглощают в области поглощения Х.13. При гидролизе 5-метил-3-хлор-1,4-гексадиена были выделены два изомерных спирта. Электронный спектр поглощения одного из них содержит полосу при 223 нм (lg e = 4,4), а другого — полосу при 236 нм (lg e = 4,3). Каково их строение?14. При нагревании образца этилциклопентадиена (lмакс = 247нм, e » 3400) в течении 0,5; 1,5; 2,5; 4 ч в спектре поглощения наблюдается уменьшение мольного коэффициента поглощения и составляет 2800, 2050, 1650, 1100 соответственно. Определите для каждого момента времени степень превращения этилциклопентадиена в его димер, если последний прозрачен при 247 нм. 15. Какие изменения в электронном спектре поглощения акролеина СН2=СН–СН=О [lмакс = 203 нм (e » 12000), lмакс = 345 нм (e » 20)] следует ожидать при разбавлении этанолом, содержащим следы кислоты?16. Пропускание водного раствора фумарата натрия при l = 250 нм и 25 °С составляет 19,2 % для 5×10–4 моль/л раствора в кювете толщиной 1 см. Вычислите оптическую плотность и молярный коэффициент поглощения. 17. Как будет изменяться УФ-спектр поглощения фенола в водном растворе при изменении кислотности среды от сильнокислой до щелочной?18. Для ряда линейных полициклических ароматических углеводородов общей формулы CnH0,5n+3 (где n = 14, 18, 22) в электронных спектрах поглощения имеются максимумы поглощения при 380 нм (e 7900 ), 480 нм (e 11000 ) и 580 нм (e 12600 ). Соотнесите данные спектров с формулами кислот. 19. Электронные спектры поглощения метиловых эфиров бензойной и фенилуксусной кислот имеют в интервале 220 – 350 нм имеют один максимум: при 260 нм (lg e 2,2) — спектр А и при 285 нм (lg e 3,1) — спектр Б. Какому веществу соответствует каждый спектр?20. Для ряда непредельных кислот СН3(СН=СН)nСООН (где n = 2, 3, 4) в электронных спектрах поглощения имеются максимумы поглощения при 260 нм (e 6500), 310 нм (e 9000) и 330 нм (e 11000). Соотнесите данные спектров со структурами кислот. 21. Какие изменения в электронном спектре поглощения циклопропанона следует ожидать после гидратации?22. Электронные спектры поглощения бутадиена-1,3 и гексадиена-2,4 в области 200–250 нм имеют один максимум : при 217 нм (e 21000) — спектр А и при 227 нм (e 23000) — спектр Б. Какому веществу принадлежит каждый спектр?23. В каком растворителе, CCl4 или СН3СN, больше вероятность зарегистрировать тонкую колебательную структуру электронного перехода растворенного соединения? Почему?24. Можно ли отличить методами оптической спектроскопии внутри- и межмолекулярную водородную связь? Аргументируйте ответ конкретными примерами.25. Определите константу кето-енольной таутомерии ацетилацетона для растворов вещества в гексане, этаноле и воде, если в указанной области молярный коэффициент поглощения равен 11200, 9500 и 1900 соответственно. Объясните, полученные результаты. СН3СОСН2СОСН3 Û СН3С(ОН)=СНСОСН3 кето-форма енольная форма lмакс 275 нм (e 100) lмакс 270 нм (e


В результате освоения дисциплины обучающийся должен:

  • иметь представление об устройстве и принципах работы приборов для физико-химического анализа;

  • иметь представление о физико-химических основах метода, причинах возникновения и формах проявления регистрируемого явления;

  • знать основы и способы подготовки анализируемого образца для каждого метода;

  • знать о том, как проявляются и отличаются в спектральном плане различные структурные группировки молекулы;

  • знать основные методики физико-химических методов;

  • уметь проверять на предмет соответствия структуру и имеющиеся спектральные данные;

  • уметь определять по спектральным данным функциональные группировки и заместители, входящие в состав молекулы;

  • уметь определять по характеристичным линиям состав смеси;

  • уметь пользоваться справочными данными и базами данных, включая базы данных в сети Интернет, для анализа и интерпретации спектральных данных;

  • быть способным составить план физико-химического анализа, однозначно подтверждающего структуру органического соединения.



  1. СТРУКТУРА И содержание теоретической части курса

Модуль 1. Введение. Обзор физических методов исследования. Метод ядерного магнитного резонанса.

Раздел I. Введение. Обзор важнейших физметодов исследования (4 час.)

История развития методов исследования вещества. Методы определения физических свойств. Общая характеристика и классификация методов. Спектроскопические методы анализа органических соединений. Основное уравнение Планка. Области электромагнитного излучения, соответствующие отдельным видам спектроскопии. Преимущества физических методов перед химическими. Методы определения электрических дипольных моментов молекул. Обзор некоторых физических методов: ядерный гамма-резонанс, рентгено-структурный анализ, методы оптической спектроскопии (электронная, колебательная, комбинационного рассеяния), микроволновая спектроскопия, масс-спектрометрия, спектроскопия ядерного магнитного резонанса, спектроскопия электронного парамагнитного резонанса. ,
Теоретические основы масс-спектрометрических и спектроскопических методов. Магнето-химические и электрооптические методы, резонансные методы.

Раздел II. Ядерный магнитный резонанс. Теоретические основы. (6 час.).

Место ЯМР среди других физических методов исследования органических соединений. Области применения. История метода. Приборы и оборудование. Магнит, датчик, ампулы. Блок-схема спектрометра ЯМР. Эксперимент. Пробоподготовка. Дейтерорастворители.

Теоретические основы ЯМР. Основы теории ЯМР-спектроскопии, спиновое

состояние ядер, поведение магнитного момента во внешнем магнитном поле. Магнитные свойства ядер. Эффект Зеемана. Уравнение резонанса. Резонанс в макроскопическом объеме. Случай непопадения в резонанс. Ситуация нескольких магнитных моментов. Спиновое эхо. Уравнение Блоха. Спектр. Продольная релаксация. Поперечная релаксация. Время релаксации. Механизмы релаксации. Скалярное взаимодействие. Инвариантность мультиплетности. Номенклатура спиновых систем. Двухспиновые системы АВ и АХ. Скалярное взаимодействие с квадрупольными ядрами. Ядерный эффект Оверхаузера.

Раздел III. Ядерный магнитный резонанс. Особенности эксперимента ЯМР (8 час.).

Временное и частотное представление спектра. Принципы импульсной ЯМР-спектроскопии с Фурье-преобразованием. Спад свободной индукции (ССИ). Оцифровкасигнала. Частота сигнала. Цифровое разрешение. Динамический диапазон АЦП.

Соотношение сигнал/шум. Операции с ССИ. Аподизация. Линейное предсказание. Дополнение нулями. Методология обработки спектра. Понятие об основных параметрах: химический сдвиг, единицы измерения хим. сдвигов, константы спин-спинового взаимодействия (КССВ). Интенсивность сигналов. Внутренние и внешние стандарты.

Факторы, определяющие хим. сдвиги: а) Влияние электронной плотности на ядре, б) влияние электронной плотности на соседних атомах в) магнитная анизотропия атомов и групп, г) влияние водородных связей, д) эффекты растворителя. Спектр. Информация, содержащаяся в файлах, полученных на приборах фирмы Bruker.

Раздел IV. Ядерный магнитный резонанс.

Спектроскопия ЯМР на ядрах 1H, 13C, 19F и др (12 час.).

Ядра 1H. Характеристики ядра. Диапазон хим. сдвигов. Стандарты. Характерныедиапазоны химсдвигов основных классов органических соединений. Таблицы хим.сдвигов. Эмпирические константы заместителей. Аддитивные схемы расчета хим. сдвиговалифатических соединений, олефинов, замещенных бензолов. Спин-спиновоевзаимодействие и химическое строение: а) геминальные КССВ, б) вицинальные КССВ, в)дальние КССВ. Уравнение Карплуса. Химическая и магнитная эквивалентность ядер.Уточнение параметров спектра. Симуляция. Экспериментальные методы спектроскопии1H-ЯМР. Специальные экспериментальные методы в спектроскопии ЯМР. Методыупрощения спектров, подавление, преднасыщение, двойной резонанс, сдвигающиереагенты (шифт-реагенты). Проблемы исследования конформаций. Обменные процессы в

спектрах ЯМР: а) внутренняя динамика органических молекул, б) межмолекулярные обменные процессы. Проблемы получения и регистрации спектров.

Ядра 13C. Характеристики ядра. Диапазон хим. сдвигов. Стандарты. Характерные диапазоны химсдвигов основных классов органических соединений. Таблицы хим. сдвигов. Эмпирические константы заместителей. Аддитивные схемы расчета хим. сдвигов замещенных бензолов. Константы спин-спинового взаимодействия. Экспериментальные методы спектроскопии 13C-ЯМР. Ядерный эффект Оверхаузера. 1D. Спектр 13С с подавлением ССВ по протонам Broad Band (BB). Спектр 13С с частичным подавлением ССВ по протонам (Off-resonance). Спектр 13С без подавления ССВ. Спектр 13С J-

модулированного спинового эхо (JMOD). С-H корреляция на ближних КССВ. С-H корреляция на дальних КССВ. Инверсная спектроскопия. С-С корреляции.

Модуль 2. Масс-спектрометрия и хромато-масс-спектрометрия высокого разрешения

Раздел I. Введение. Обзор важнейших разновидностей использования метода масс-спектрометрии. Теория метода (4 час.).

Введение. Краткие сведения о масс-спектрометрии. Образование и вид масс-спектра. Молекулярные ионы, многозарядные иметастабильные ионы. Элементный состав ионов. Принципиальная схема масс-спектрометра. Системы напуска: холодный ввод, горячий ввод, прямой ввод. Хромато-масс-спектрометрия. Методы ионизации:
электронная ионизация, фотоионизация,

ионизация полем, полевая десорбция, химическая ионизация, электроспрей, лазерная десорбция, химическая ионизация при атмосферном давлении. Разделение ионов: электрический, магнитный, квадрупольный, времяпролетный анализаторы, ионная ловушка. Масс-спектрометры с двойной фокусировкой. Основные характеристики масс-спектрометра: разрешающая способность, массовая область, способ развертки масс-спектра. Способы регистрации и представления масс-спектров.

Энергетическое состояние ионов, образующихся при ионизации. Принцип Франка-Кондона, адиабатический потенциал ионизации. Основное и электронно-возбужденные состояния молекулярного иона. Процессы перегруппировки в масс-спектрометрии.

Влияние различных методов ввода и ионизации на вид масс-спектра. Модификация масс-спектра. Способы повышения летучести соединений.

Метод хромато-масс-спектрометрии. Стыковка масс-спектрометра с хроматографом. Информация, получаемая в методе хромато-масс-спектрометрии.

Современное состояние методов масс-спектрометрии и хромато-масс-

спектрометрии.

Раздел II. Обработка и анализ масс-спектра (6 час.).

Расшифровка масс-спектров. Стабильные изотопы и вычисление интенсивностейизотопных пиков. Определение молекулярного веса и элементного состава соединения помасс-спектру низкого разрешения. Определение элементного состава по масс-спектрунизкого и высокого разрешения. Формальная ненасыщенность.

Применение масс-спектрометрии для решения структурных задач органической химии. Функциональные группы, характеристические потери и пики. Анализ масс-спектров с помощью ЭВМ. Методы определения содержания изотопной метки в соединениях, меченых стабильными изотопами.

Модуль 3. Методы оптической спектроскопии и комплексное использование физических методов анализа.

Раздел I. Инфракрасная спектроскопия. (4 час.).

Введение. Молекулярная спектроскопия. Методы колебательной и вращательной спектроскопии.Уровни энергии и переходы между ними. Шкала электромагнитных волн и диапазоны спектральных методов. Длина волны, частота, волновое число, интенсивность. Спектр. Форма линии. Закон Бугера-Ламберта-Бера.


Инфракрасные спектры. История метода. Приборы. Источники и приемники ИК излучения. Материалы, используемые в ИК-области спектра. Блок-схема и принцип работы двухлучевого спектрофотометра. Техника приготовления образцов для анализа. Растворители. Физические основы метода. Инфракрасные спектры двухатомных молекул.

Интенсивность поглощения. Правила отбора. Форма инфракрасных полос поглощения. Колебание многоатомных молекул. Нормальные колебания нелинейных и линейных молекул. Валентные колебания, деформационные колебания, обертоны и комбинационные полосы. Резонанс Ферми.

Характеристичность частот в колебательных спектрах молекул. Область функциональных групп и область “отпечатков пальцев”. Применение ИК-спектров для идентификации органических соединений. Атласы и каталоги инфракрасных спектров. Структурный анализ по характеристическим частотам. Корреляционные диаграммы характеристических частот. Межмолекулярные эффекты и характеристические частоты групп. Влияние растворителя и концентрации. Влияние растворителя и концентрации. Влияние внутримолекулярных факторов на характеристические частоты групп: напряжение цикла и стерические эффекты, электронные эффекты и сопряжение, дипольное и трансаннулярное взаимодействие (эффект поля), внутримолекулярная

водородная связь (ВС). Различие внутри- и межмолекулярной ВС. Влияние ВС на полосы поглощения группы донора и группы акцептора протона. Оценка энергии ВС.

Особенности ИК-спектров важнейших классов органических соединений. Спирты, амины, парафины и циклопарафины, олефины, ацетилены, ароматические углеводороды, простые эфиры, карбоновые кислоты и сложные эфиры, нитрилы, нитросоединения, кетоны, альдегиды и т.д.

Качественный и количественный анализ смеси органических веществ по ИК-

спектрам. Использование закона Ламберта-Бера для многокомпонентных растворов. Количественный анализ способом эталонов. Способ калибровочной кривой. Метод разностных спектров.

Раздел II. Спектроскопия комбинационного рассеяния (2 час.).

Спектроскопия комбинационного рассеяния света (КРС). Природа явления. Аппаратура для получения спектров КРС. Интенсивность полос в спектрах КРС. Сравнительная характеристика ИК- и КРС-спектров.

Знакомство с корреляционными таблицами частот в колебательных спектрах и их приложением к интерпретации спектров. Решение задач по интерпретации: ИК-спектров с помощью корреляционных таблиц.