Файл: Metodichka_po_elektrotekhnike_kolledzh (1).doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 08.04.2024

Просмотров: 410

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Федеральное государственное образовательное учреждение

Описание лабораторного стенда

Содержание отчета

Лабораторная работа №1 поверка вольтметра и амперметра Цель работы:

Общие теоретические положения.

Приборы и оборудование:

Порядок выполнения работы.

Литература

Приборы и оборудование:

Порядок выполнения работы

1. Проварка закона Ома для участка цепи и всей цепи

2. Исследование цепи при последовательном соединении резисторов.

3. Исследование цепи при параллельном соединении резисторов.

Литература

Контрольные вопросы:

Лабораторная работа №3 параллельное соединение индуктивной катушки и конденсатора. Компенсация реактивной мощности Цель работы:

Общие теоретические положения.

Приборы и оборудование:

Порядок выполнения работы:

Литература:

Контрольные вопросы:

Лабораторная работа №4 исследование трехфазной цепи при соединении электроприёмников звездой Цель работы:

Общие теоретические положения.

Приборы и оборудование:

Порядок выполнения работы

Литература

Контрольные вопросы:

Лабораторная работа №5 исследование трехфазной цепи при соединении электроприёмников треугольником Цель работы:

Общие теоретические положения.

Приборы и оборудование:

Порядок выполнения работы:

Литература:

Контрольные вопросы:

Дополнительная литература:

Лабораторная работа 6 Техническое обслуживание и диагностика электродвигателей переменного и постоянного тока.

Неисправности двигателей постоянного тока.

Порядок проведения работы (для трехфазного асинхронного электродвигателя)

(Для двигателя постоянного тока)

Лабораторная работа 7 Учет электроэнергии в сетях переменного тока

Счётчик ватт-часов активной энергии переменного тока статический «Меркурий 200»

1. Описание счётчика и принципа его работы.

1.1 Назначение счётчика

1.2 Условия окружающей среды

1.3 Технические характеристики

1.4 Устройство и работа счётчика

2. Подготовка к работе.

2.1 Эксплуатационные ограничения.

3. Порядок работы.

3.1.1 Режимы индикации счётчика.

3.1.1.1 Режим индикации накопленной энергии по действующим тарифам.

3.1.1.2 Режим индикации мощности нагрузки.

3.1.1.3 Режим индикации текущего времени.

3.1.1.5 Режим индикации потребленной энергии на начало месяца.

3.1.1.6 Индикация тарифного расписания.

3.1.1.7 Кроме стандарт/того режима индикации существует ещё циклический.

3.2Переход на зимнее/летнее время.

Описание лабораторной установки

Лабораторная работа 8 неуправляемый трехфазный выпрямитель с полупроводниковыми диодами

Основные теоретические положения

Средний выпрямленный ток плеча моста определяется так:

Сглаживающие фильтры

Описание установки

Порядок выполнения работы

Лабораторная работа 9 однофазный тиристорный выпрямитель с функцией стабилизации выходного напряжения

Основные теоретические положения

Тиристорный регулятор напряжения с коммутацией путем подключения заряженной емкости

Тиристорные регуляторы напряжения с амплитуднофазовым управлением

С фазоимпульсным управлением

Порядок проведения работы

Лабораторная работа 10 лампы, светильники, облучатели оптического диапазона

Системы освещения

Общее освещение подразделяется на:

Выбор проводов

Выбор светильников Светильником называется осветительный прибор, осуществляющий перераспределение светового потока лампы внутри значительных телесных углов

Ртутные люминесцентные лампы низкого давления

Схемы включения газоразрядных ламп высокого давления

Рис. 1. Эскизы светильников

Устройство и маркировка различных источников света

Применяемые в сельскохозяйственном производстве электрические источники оптического излучения делятся на два типа: тепловые и газоразрядные. В тепловых источниках электрическая энергия расходуется на нагрев нити накала, которая является собственно источником излучения. В газоразрядных источниках происходит электрический разряд в среде какого-либо газа, сопровождающийся излучением оптического диапазона.

Лампы накаливания

Лампа накаливания с угольным телом накала была изобретена в 1872 г. русским электротехником А.Н. Лодыгиным. Эта лампа была усовершенствована американским изобретателем Т.Э. Эдисоном, который в 1879 г. предложил лампу накаливания с угольной нитью, подобную по устройству современной. Дальнейшее усовершенствование ламп накаливания связано с использованием различных металлов в качестве тела накаливания. Вольфрам был впервые применен А.Н. Лодыгиным. Для уменьшения окисления вольфрама в колбах ламп создавался вакуум, который в свою очередь приводил к быстрому испарению вольфрама при высоких температурах. Известный американский ученый И. Ленгмюр предложил заполнять колбу инертным газом. Это позволило повысить температуру нити и привело к повышению тепловой отдачи в 1,5 раза. Однако наличие газа в колбе увеличило тепловые потери. Следующий шаг в усовершенствовании – уменьшение поверхности тела накала; для этого вольфрамовая нить сворачивается в биспираль (двойную спираль).

В настоящее время промышленность выпускает около 2000 различных типов ламп накаливания. Их преимущество перед другими источниками света заключается в простоте изготовления, удобстве включения в сеть и простоте эксплуатации. Основными недостатками ламп накаливания являются: малая экономичность из-за малой световой отдачи; неудовлетворительный спектральный состав, не позволяющий использовать лампы накаливания там, где требуется хорошая цветопередача; относительно малое содержание коротковолновых видимых излучений в спектре.

Лампы накаливания общего назначения изготовляют вакуумными (тип НВ), газополными с моноспиральной нитью накаливания (тип НГ), с биспиральной нитью накаливания (тип НБ). Лампы-светильники могут быть с диффузным или зеркальным отражающим слоем (типы НГД и ЗН). Для сушки и обогрева производят термоизлучатели (тип ЗС).


Промышленность выпускает большое число специальных ламп накапливания. Лампы с повышенной световой отдачей (тип НБ и НБК) – газополные биспиральные – наполняют смесью инертных газов – аргон, криптон, озон.

Срок службы ламп накаливания общего применения составляет около 1000 часов.

Обычно для ламп употребляют резьбовые (обозначается буквой П) и штырьковые, или штифтовые (обозначаются буквой Ш) цоколи. Последние исключают самоотвинчивание при вибрации. Их применяют главным образом в железнодорожных и автомобильных лампах. Штырьковые цоколи могут быть одноконтактными и двухконтактными.

Лампы-светильники отличаются целесообразным перераспределением светового потока. Лампы типа Д излучают вниз направленный световой поток, а в стороны – рассеянный. Лампы типа НГД имеют диффузный отражатель (с коэффициентом отражения 0,91 – 0,97) на верхней или нижней частях колбы. Световой поток, излучаемый через выходное отверстие этой лампы-светильника, составляет не менее 80% общего потока. Зеркальные лампы накаливания применяют для общего освещения высоких помещений или открытых пространств декоративного освещения. Баллон лампы имеет параболическую форму. Его внутренняя поверхность частично покрыта зеркальным слоем, а внешняя – матирована. В помещении зеркальные лампы применяют без арматуры.

Лампы накаливания-термоизлучатели предназначены для сушки различных изделий и материалов. Верхняя часть баллона лампы изнутри покрыта зеркальным слоем.

Для местного освещения применяют лампы-светильники на 12 и 36 В с диффузным отражателем (тип МОД) и с зеркальным отражателем (тип МОЗ). Срок службы ламп местного освещения – 1000 часов.

В последние годы разработано и внедряется ряд серий галогенных ламп накаливания в кварцевых оболочках с йодистым и бромистым наполнением для различных целей – оптических приборов и кинопроекций, фото, телевизионного и театрального освещения, для инфракрасного облучения. Их буквенное обозначение КИ, КГ, КИМ, КГМ, КИО и др.


Ртутные люминесцентные лампы низкого давления

Люминесцентные лампы относятся к классу газоразрядных источников света. В основе действия газоразрядных источников излучения лежит электрический разряд в атмосфере инертного газа (чаще всего аргон) и паров ртути. Излучение происходит за счет перехода электронов атомов ртути с орбиты с высоким содержанием энергии на орбиты с меньшей энергией. Из всего разнообразия электрических разрядов (тихий, тлеющий и т.д.) для искусственных источников характерен другой разряд, отличающийся высокими плотностями токов в канале разряда. Люминесцентные лампы выполняют в виде прямых или дугообразных стеклянных трубок. Оба конца трубки герметично закрыты и на донышках смонтированы стеклянные ножки с вольфрамовыми оксидированными электродами в виде нитей. На обоих концах трубки имеются цоколи со штырьками. Трубки, заполненные гелием, дают светло-желтый или бледно-розовый свет, неоном – красный свет, аргоном – голубой, парами натрия – оранжевый и т.д. Трубки, заполненные парами ртути, предназначены в основном для ультрафиолетового излучения. Это излучение, возникающее в парах ртути, используется в люминесцентных лампах, стеклянные трубки которых изнутри покрыты люминофором, преобразующим ультрафиолетовое излучение в более длинноволновое – видимое.

По цветности излучения, зависящего от люминофора, различают люминесцентные лампы дневного света (тип ЛДЦ и ЛД), белого света (тип ЛЮ), холодно-белого (тип ЛХБ) и тепло-белого (тип ЛТБ).

Цветность ламп ЛДЦ близка к цветности рассеянного белого света, что обеспечивает наиболее точное различие в цвете предметов и материалов. Лампы ЛД в меньшей степени обладают таким свойством, хотя их цветность также близка к цветности дневного рассеянного света. Лампы ЛБ имеют близкую к цветности солнечной, отраженной от облаков. Они обладают более высокой светоотдачей, т.е. более экономичны, чем лампы ЛД.

Срок службы люминесцентных ламп – от 5 000 до 10 000 часов.

Преимущества люминесцентных ламп по сравнению с лампами накаливания заключается в том, что они меньше расходуют электроэнергии и срок их службы больше в 5 - 10 раз. К недостаткам этих ламп относят следующие: необходимость в приборах для зажигания ламп и ограничения тока, большие габариты, чувствительность к температуре окружающей среды.

Бактерицидные и эритэмные лампы действуют по такому же принципу, что и люминесцентные. Бактерицидные лампы (типа БУВ и ДБ) трубные. В бактерицидных лампах (типа БУВ и ДБ) трубка изготовлена из специального увиолевого стекла, а люминофор отсутствует. Ультрафиолетовые лучи разряда паров ртути хорошо проходят через стекло трубок и используется для обеззараживания воздуха, воды, поверхностей различных предметов и материалов.


В эритэмных лампах (тип ЭУВ, ЛЭ) трубка изготовлена также из увиолевого стекла. Изнутри она покрыта люминофором, преобразующим коротковолновое излучение разряда в более длинноволновые ультрафиолетовые лучи, вызывающие загар (эритему). Бактерицидные и эрительные лампы выпускают мощностью 5, 30, 40, 60 Вт.

В новой эритэмной дуговой ртутно-вольфрамовой диффузной лампе ДРВЭД, предназначенной для облучения с одновременным освещением, балластным сопротивлением является нить накала, включенная последовательно с ртутно-кварцевой лампой.

Газоразрядные лампы высокого давления. Из ламп высокого давления в сельском хозяйстве широко распространены лампы ПРК (прямая ртутно-кварцевая) и ДРТ (дуговая ртутная трубчатая). Лампа ДРТ представляет собой прямую трубку из кварцевого стекла, в торцы которой введены электроды в виде штырей (одним выводом). Трубка заполнена аргоном и небольшим количеством ртути. Кварцевое стекло пропускает ультрафиолетовые лучи, поэтому лампа одновременно излучает и в видимом и в ультрафиолетовом диапазоне всех областей.

В качестве источников света широко применяются лампы высокого давления ДРЛ (дуговые ртутные люминесцентные). Лампы типа ДРЛ с исправленной цветностью предназначены для освещения улиц и промышленных предприятий, не требующих высокого качества цветопередачи.

Прямая ртутно-кварцевая горелка (трубка), находящаяся внутри баллона лампы, содержит дозированную капельку ртути и аргон при давлении 30 мм рт. ст. Горелка создает интенсивное ультрафиолетовое невидимое и голубовато-зеленое видимое излучение. Ультрафиолетовое излучение поглощается люминофором, которым покрыта внутренняя стенка баллона лампы, и превращается в видимый свет. Цвет суммарного излучения близок к белому. Доля красного излучения – 5–8%.

Конструктивно лампы выполняются двух электродными (имеются два основных электрода) и четырех электродными (кроме двух основных есть еще одни или два поджигающих электрода).

В настоящее время для целей освещения выпускаются лампы с добавками йодидов натрия, таллия и индия (лампы типа ДРИ), световая отдача которых в 1,5-2 раза больше, чем у ламп ДРЛ.

На основе ламп ДРЛ создан тепличный облучатель ОТ, имеющий отражающий слой в верхней части колбы. Этот облучатель создает для растений благоприятный по спектральному составу световой поток, т.е. имеет повышенную фитоотдачу. Колба его выполнена из особо термостойкого стекла.


Рассмотрение процесса зажигания позволяет уточнить назначение основных элементов схемы. Стартер выполняет две важные функции:

- замыкает накоротко цепь для того, чтобы повышенным током разогреть электроды лампы и облегчить зажигание;

- разрывает после разогрева электродов лампы электрическую цепь и тем самым вызывает импульс повышенного напряжения, обеспечивающего пробой газового промежутка.

Дроссель выполняет три функции:

- ограничивает ток при замыкании электродов стартера;

- генерирует импульс напряжения для пробоя лампы за счет э.д.с. самоиндукции в момент размыкания электродов стартера;

- стабилизирует горение дугового разряда после зажигания.

Люминесцентная лампа может включаться в сеть и с активным балластом. Иногда в качестве балласта используется лампа накаливания. При создании и эксплуатации этих схем надо учесть, что при активном балласте, по сравнению с индуктивным, возрастают потери мощности в схеме, затрудняется зажигание лампы, так как активный балласт не создает э.д.с. самоиндукции, и уменьшается ее световой поток.

Существуют и бесстартерные схемы, в которых исключены недостатки, обусловленные наличием стартера.

Для стартерных и бесстартерных схем включения выпускаются специальные пускорегулирующие аппараты (ПРА). Стартерные ПРА обозначаются 1УБИ, 1УБЕ, 1УБК (индуктивный, емкостный), компенсированный балласт, соответственно, для одной лампы, и 2УБИ, 2УБЕ, 2УБК (для двух ламп).

Бесстартерные ПРА обозначаются АБИ, АБЕ, АБК. Марка аппарата 2АБК-80/220-АМП, например, расшифровывается так: двухламповый бесстартерный аппарат, компенсированный, мощность каждой лампы 80 Вт, напряжение сети 220 В, антистробоскопический, независимый, с пониженным уровнем шума.