Файл: wirelesspowerspecificationpart1.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 13.04.2024

Просмотров: 348

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

 

System Description

 

Wireless Power Transfer

General

Version 1.1.1 Addendum A14

This page is intentionally left blank.

4

© Wireless Power Consortium, September 2012

 

System Description

 

Wireless Power Transfer

Version 1.1.1 Addendum A14

Power Transmitter Designs

2 Power Transmitter Designs

This Section contains the definition of the new Power Transmitter design A14. The provisions in this Section will be integrated into [Part 1] in a next release of this System Description Wireless Power Transfer.

2.1Power Transmitter design A14

Figure 2-1 illustrates the functional block diagram of Power Transmitter design A14, which consists of two major functional units, namely a Power Conversion Unit and a Communications and Control Unit.

Input Power

Inverter

Coil

Selection

Control &

Communications

Unit Primary

Coils

Current

Sense

Unit Conversion Power

Figure 2-1: Functional block diagram of Power Transmitter design A14

The Power Conversion Unit on the right-hand side of Figure 2-1 comprises the analog parts of the design. The inverter converts the DC input to an AC waveform that drives a resonant circuit, which consists of the selected Primary Coil plus a series capacitor. The selected Primary Coil is one from a linear array of partially overlapping Primary Coils, as appropriate for the position of the Power Receiver relative to the Primary Coils. Selection of the Primary Coil proceeds by the Power Transmitter attempting to establish communication with a Power Receiver using any of the Primary Coils. Note that the array may consist of a single Primary Coil only, in which case the selection is trivial. Finally, the current sense monitors the Primary Coil current.

The Communications and Control Unit on the left-hand side of Figure 2-1 comprises the digital logic part of the design. This unit receives and decodes messages from the Power Receiver, configures the Coil Selection block to connect the appropriate Primary Coil, executes the relevant power control algorithms and protocols, and drives the frequency of the AC waveform to control the power transfer. The Communications and Control Unit also interfaces with other subsystems of the Base Station, e.g. for user interface purposes.

2.1.1.1Mechanical details

Power Transmitter design A14 includes one or more Primary Coils as defined in Section 2.1.1.1.1, Shielding as defined in Section 2.1.1.1.2, an Interface Surface as defined in Section 2.1.1.1.3.

© Wireless Power Consortium, September 2012

5


 

System Description

 

Wireless Power Transfer

Power Transmitter Designs

Version 1.1.1 Addendum A14

2.1.1.1.1Primary Coil

The Primary Coil is of the wire-wound type, and consists of litz wire having 115 strands of 0.08 mm diameter, or equivalent. As shown in Figure 2-2, the Primary Coil has a racetrack-like shape and consists of a single layer. Table 2-1 lists the dimensions of the Primary Coil.

Figure 2-2: Primary Coil of Power Transmitter design A14

Table 2-1: Primary Coil parameters of Power Transmitter design A14

 

Parameter

 

 

Symbol

 

 

Value

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Outer length

 

 

 

 

 

mm

 

 

 

 

 

 

 

 

 

 

 

Inner length

 

 

 

 

 

mm

 

 

 

 

 

 

 

 

 

 

 

Outer width

 

 

 

 

 

mm

 

 

 

 

 

 

 

 

 

 

 

Inner width

 

 

 

 

 

mm

 

 

 

 

 

 

 

 

 

 

 

Thickness

 

 

 

 

 

mm

 

 

 

 

 

 

 

 

 

 

Number of turns per layer

 

 

 

 

23.5

 

 

 

 

 

 

 

 

 

 

Number of layers

 

 

 

1

 

 

 

 

 

 

 

 

 

 

Power Transmitter design A14 contains two Primary Coils, which are mounted in a Shielding block (see Section 2.1.1.1.2) with their long axes coincident, and a displacement of = mm between their centers. See Figure 2-3.

Figure 2-3: Primary Coils of Power Transmitter design A14

6

© Wireless Power Consortium, September 2012


 

System Description

 

Wireless Power Transfer

Version 1.1.1 Addendum A14

Power Transmitter Designs

2.1.1.1.2Shielding

As shown in Figure 2-4, soft-magnetic material protects the Base Station from the magnetic field that is generated in the Primary Coil. The top face of the Shielding block is aligned with the top face of the Primary Coils, such that the Shielding surrounds the Primary Coils on all sides except for the top face. In addition, the Shielding extends to at least 2.5 mm beyond the outer edge of the Primary Coils, and has a thickness of at least 4.7 mm. This version 1.1.1 Addendum A14 to the System Description Wireless Power Transfer, Volume I, Part 1, limits the composition of the Shielding to a choice from the following list of materials:

Mn-Zn-Ferrite Dust Core – any supplier

Interface

Surface

5 mm min.

dz

Primary Coil (lower)

 

 

 

 

 

 

4.7 mm

 

 

 

 

 

 

 

 

 

Base

Primary Coil (upper)

2.5 mm min.

 

 

 

 

 

 

 

Shielding

 

 

 

 

 

 

 

Station

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4: Primary Coil assembly of Power Transmitter design A14

2.1.1.1.3Interface Surface

As shown in Figure 2-4, the distance from the Primary Coil to the Interface Surface of the Base Station is mm, across the top face of the Primary Coil. In addition, the Interface Surface of the Base

Station extends at least 5 mm beyond the outer edges of the Primary Coils.

2.1.1.1.4Inter coil separation

If the Base Station contains multiple type A14 Power Transmitters, the Primary Coils of any pair of those Power Transmitters shall have a center-to-center distance of at least 70 mm.

2.1.1.2Electrical details

As shown in Figure 2-5, Power Transmitter design A14 uses a full-bridge inverter to drive the Primary Coils and a series capacitance. In addition, Power Transmitter design A14 shall operate coil selection switches SWu and SWl such that only a single Primary Coil is connected to the inverter.

Within the Operating Frequency range Specified below, the assembly of Primary Coils and Shielding has a

self inductance

μH.

The value of the series capacitance is

nF. The input voltage

to the full-bridge inverter is

V. (Informative) Near resonance, the voltage developed across the

series capacitance can reach levels up to 100 Vpk-pk.

 

Power Transmitter design A14 uses the Operating Frequency and duty cycle of the full-bridge inverter to control the amount of power that is transferred. For this purpose, the Operating Frequency range of the full-bridge inverter is kHz with a duty cycle of 50% and its duty cycle range is 2…50% at

an Operating Frequency of 110…205 kHz. A higher Operating Frequency and lower duty cycle result in the transfer of a lower amount of power. In order to achieve a sufficiently accurate adjustment of the power that is transferred, a type A14 Power Transmitter shall be able to control the frequency with a resolution of 0.5 kHz or better, and the duty cycle of the Power Signal with a resolution of 0.1% or better.

When a type A14 Power Transmitter first applies a Power Signal (Digital Ping; see [Part 1] Section 5.2.1), the Power Transmitter shall use an initial Operating Frequency of 142 kHz, and a duty cycle of 50%. If the

© Wireless Power Consortium, September 2012

7


 

System Description

 

Wireless Power Transfer

Power Transmitter Designs

Version 1.1.1 Addendum A14

Power Transmitter does not to receive a Signal Strength Packet from the Power Receiver, the Power Transmitter shall remove the Power Signal as defined in [Part 1], Section 5.2.1. The Power Transmitter may reapply the Power Signal multiple times at other-consecutively lower-Operating Frequencies within the range specified above, until the Power Transmitter receives a Signal Strength Packet containing an appropriate Signal Strength Value.

Full-bridge

Inverter

Input

Voltage + Control

CP

LPu

LPl

SWu SWl

Figure 2-5: Electrical diagram (outline) of Power Transmitter design A14

Control of the power transfer shall proceed using the PID algorithm, which is defined in [Part 1] Section 5.2.3.1. The controlled variable ( ) introduced in the definition of that algorithm represents Operating Frequency or duty cycle. In order to guarantee sufficiently accurate power control, a type A14 Power Transmitter shall determine the amplitude of the Primary Cell current-which is equal to the Primary Coil current-with a resolution of 5mA or better. Finally, Table 2-2 and Table 2-3 provide the values of several parameters, which are used in the PID algorithm.

8

© Wireless Power Consortium, September 2012

 

 

 

System Description

 

 

 

 

 

 

 

 

 

Wireless Power Transfer

 

 

 

 

 

 

Version 1.1.1 Addendum A14

 

 

 

 

 

 

 

Power Transmitter Designs

 

 

Table 2-2: PID parameters for Operating Frequency control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter

 

 

Symbol

 

 

Value

 

 

Unit

 

 

 

 

Proportional gain

 

 

 

 

 

1

 

 

mA-1

 

 

 

Integral gain

 

 

 

 

 

0

 

 

mA-1ms-1

 

 

 

Derivative gain

 

 

 

 

 

0

 

 

mA-1ms

 

 

 

Integral term limit

 

 

 

 

 

N.A.

 

 

N.A.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PID output limit

 

 

 

 

 

20,000

 

 

N.A.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scaling factor

 

 

 

 

 

1.0

 

 

Hz

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2-3: PID parameters for duty cycle control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter

 

 

Symbol

 

 

Value

 

 

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proportional gain

 

 

 

 

 

1

 

 

mA-1

 

 

 

Integral gain

 

 

 

 

 

0

 

 

mA-1ms-1

 

 

 

Derivative gain

 

 

 

 

 

0

 

 

mA-1ms

 

 

 

Integral term limit

 

 

 

 

 

N.A

 

 

N.A.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PID output limit

 

 

 

 

 

20,000

 

 

N.A.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scaling factor

 

 

 

 

 

0.1

 

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Wireless Power Consortium, September 2012

9


 

System Description

 

Wireless Power Transfer

Power Transmitter Designs

Version 1.1.1 Addendum A14

This page is intentionally left blank.

10

© Wireless Power Consortium, September 2012

System Description

Wireless Power Transfer

Volume I: Low Power

Part 1: Interface Definition

Version 1.1 Addendum B4

May 2012

System Description

Wireless Power Transfer

Version 1.1 Addendum B4

System Description

Wireless Power Transfer

Volume I: Low Power

Part 1: Interface Definition

Version 1.1 Addendum B4

May 2012

© Wireless Power Consortium, May 2012

System Description

Wireless Power Transfer

Version 1.1 Addendum B4

COPYRIGHT

This System Description Wireless Power Transfer is published by the Wireless Power Consortium, and has been prepared by the Wireless Power Consortium in close co-operation with the members of the Wireless Power Consortium. All rights are reserved. Reproduction in whole or in part is prohibited without express and prior written permission of the Wireless Power Consortium.

DISCLAIMER

The information contained herein is believed to be accurate as of the date of publication. However, the Wireless Power Consortium will not be liable for any damages, including indirect or consequential, from use of this System Description Wireless Power Transfer or reliance on the accuracy of this document.

NOTICE

For any further explanation of the contents of this document, or in case of any perceived inconsistency or ambiguity of interpretation, or for any information regarding the associated patent license program, please contact: info@wirelesspowerconsortium.com.

© Wireless Power Consortium, May 2012

 

System Description

 

Wireless Power Transfer

Version 1.1 Addendum B4

Table of Contents

Table of Contents

1

General...................................................................................................................

1

 

1.1

Scope.............................................................................................................................................................................................

1

 

1.2

Conformance and references .............................................................................................................................................

1

 

1.3

Definitions ..................................................................................................................................................................................

1

 

1.4

Acronyms ....................................................................................................................................................................................

1

 

1.5

Symbols........................................................................................................................................................................................

1

 

1.6

Conventions ...............................................................................................................................................................................

2

 

1.6.1

Cross references ............................................................................................................................................................

2

 

1.6.2

Informative text.............................................................................................................................................................

2

 

1.6.3

Terms in capitals...........................................................................................................................................................

2

 

1.6.4

Notation of numbers....................................................................................................................................................

2

 

1.6.5 Units of physical quantities ......................................................................................................................................

2

 

1.6.6 Bit ordering in a byte...................................................................................................................................................

2

 

1.6.7

Byte numbering .............................................................................................................................................................

2

 

1.6.8

Multiple-bit Fields.........................................................................................................................................................

2

 

1.7

Operators ....................................................................................................................................................................................

3

 

1.7.1

Exclusive-OR ...................................................................................................................................................................

3

 

1.7.2

Concatenation.................................................................................................................................................................

3

2

Power Transmitter Designs............................................................................

5

 

2.1.1 Power Transmitter design B4 .................................................................................................................................

5

© Wireless Power Consortium, May 2012

i