ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.06.2024
Просмотров: 486
Скачиваний: 0
|
123 |
।áâ ¢«¥¨¥ ¢§ ¨¬®¤¥©á⢨ï.
áᬮâਬ ᮢ ®¡ë箥 ãà ¢¥¨¥ ।¨£¥à : |
|
i~ @ (t) = (H0 + HI) (t) |
(6.14) |
@t |
|
£¤¥ H0 { £ ¬¨«ì⮨ ¥¢§ ¨¬®¤¥©áâ¢ãîé¨å ¯®«¥© (ç áâ¨æ), |
HI { ¥ª®â®àë© £ - |
¬¨«мв®¨ ¢§ ¨¬®¤¥©бв¢¨п. ¥ªв®а б®бв®п¨п ¢ ®вбгвбв¢¨¥ ¢§ ¨¬®¤¥©бв¢¨п, в.¥. ¯а¨ HI = 0, ®¯¨áë¢ ¥â ¤¢¨¦¥¨¥ § ¤ ®£® ç¨á« ᢮¡®¤ëå ç áâ¨æ á ®¯à¥¤¥«¥- 묨 ¨¬¯ã«ìá ¬¨ ¨ ᯨ ¬¨. ¯¥à â®à HI ®¯¨áë¢ ¥â ¢§ ¨¬®¤¥©á⢨¥ íâ¨å ç áâ¨æ ¤àã£ á ¤à㣮¬ ¨ á ¬¨å á ᮡ®©.
¢¥¤¥¬ ⥯¥àì ¢¥ªâ®à á®áâ®ï¨ï:
iH0t
(t) = e ~ (t)
¥âà㤮 ã¡¥¤¨âìáï, çâ® (t) 㤮¢«¥â¢®àï¥â ãà ¢¥¨î:
i~@ (t) = e |
~ |
HIe; ~ |
|
(t) |
||
|
|
iH0t |
|
iH0t |
|
|
@t |
|
|
|
|
|
|
¨«¨ |
@ (t) |
|
|
|
|
|
i~ |
= HI(t) (t) |
|
||||
|
@t |
|
|
|
|
|
£¤¥ |
|
iH0t |
iH0t |
|
||
|
|
|
||||
HIIR(t) = e ~ |
|
HIe; |
~ |
|
(6.15)
(6.16)
(6.17)
(6.18)
{ ®¯¥à â®à í¥à£¨¨ ¢§ ¨¬®¤¥©áâ¢¨ï ¢ í⮬ ®¢®¬ ¯à¥¤áâ ¢«¥¨¨. â®â ®¯¥à â®à  § ¢¨á¨â ®â ¢à¥¬¥¨, ¢ ¯à®â¨¢®¯®«®¦®áâì è।¨£¥à®¢áª®¬ã ®¯¥à â®àã HI.®®¡é¥, ¯à®¨§¢®«ìë© ®¯¥à â®à QIR(t) ¢ í⮬, â ª §ë¢ ¥¬®¬ ¯à¥¤áâ ¢«¥¨¨ ¢§ ¨¬®¤¥©á⢨ï, á¢ï§ á è।¨£¥à®¢áª¨¬ ®¯¥à â®à®¬ QS ª ª:
QIR(t) = e |
iH0t |
QS e; |
iH0t |
(6.19) |
~ |
~ |
âáî¤ áà §ã ¦¥ á«¥¤ã¥â, çâ® ¢ ¯à¥¤áâ ¢«¥¨¨ ¢§ ¨¬®¤¥©áâ¢¨ï § ¢¨á¨¬®áâì ®¯¥à - â®à®¢ ®â ¢à¥¬¥¨ ®¯à¥¤¥«ï¥âáï £ ¬¨«ì⮨ ®¬ ᢮¡®¤ëå ç áâ¨æ, â ª ª ª ¤¨ää¥- à¥æ¨àãï (6.19) ¯® t ¯®«ãç ¥¬:
|
|
i~@QIR(t) = [QIR(t); H0] |
(6.20) |
|
|
@t |
|
¬¥â¨¬, çâ® HIR |
= |
HS. ª¨¬ ®¡à §®¬, ¢ ¯à¥¤áâ ¢«¥¨¨ ¢§ ¨¬®¤¥©áâ¢¨ï ®¯¥- |
|
0 |
|
0 |
|
à â®àë ¯®«¥© 㤮¢«¥â¢®àïîâ ãà ¢¥¨ï¬ ¤¢¨¦¥¨ï ᢮¡®¤®£® ¯®«ï 3, ⮣¤ ª ª |
|||
§ ¢¨á¨¬®áâì ®â ¢à¥¬¥¨ ¢¥ªâ®à á®áâ®ï¨ï á¨á⥬ë |
(t) ®¯à¥¤¥«ï¥âáï, ᮣ« á® |
(6.17), «¨èì í¥à£¨¥© ¢§ ¨¬®¤¥©á⢨ï. ।áâ ¢«¥¨¥ ¢§ ¨¬®¤¥©áâ¢¨ï ®ª §ë¢ ¥âáï
¢¥áì¬ ã¤®¡ë¬ ¤«ï ¯®áâ஥¨ï ⥮ਨ ¢®§¬ã饨©.
áᬮâਬ ¯à¨¬¥à ⥮à¨î ¤¨à ª®¢áª¨å ä¥à¬¨®®¢, ¢§ ¨¬®¤¥©áâ¢ãîé¨å ᮠ᪠«ïàë¬ ¯®-
«¥¬. è।¨£¥à®¢áª®¬ ¯à¥¤áâ ¢«¥¨¨ £ ¬¨«ì⮨ ᢮¡®¤ëå ¯®«¥© ¨¬¥¥â ¢¨¤: |
|
|||||||||||
H0 = Z |
d3 r (x)(;i r + m) |
|
1 |
|
@'(x) |
|
2 |
|
1 |
|
1 |
|
(x) + |
2 |
|
@t |
|
|
+ |
2 |
(r'(x))2 + |
2 m2'2(x) |
(6.21) |
||
|
|
|
|
|
|
|
|
|
3 з бв®бв¨, нв® ®§ з ¥в, зв® ¤«п «о¡ле ¬®¬¥в®¢ ¢а¥¬¥¨ б®еа повбп б®®в¢¥вбв¢гой¨¥ ª®¬¬гв ж¨®л¥ б®®в®и¥¨п ¤«п нв¨е ®¯¥а в®а®¢.
124 |
|
|
|
|
|
|
|
||
£ ¬¨«ì⮨ ¢§ ¨¬®¤¥©á⢨ï ( ¯¨á ë© ¨§ ¯à®á⥩è¨å á®®¡à ¦¥¨© ५ï⨢¨áâ᪮© ¨¢ - |
|||||||||
ਠâ®áâ¨) ¥áâì: |
|
|
HI = g Z |
|
|
|
|
|
|
|
|
|
d3 r (x) (x)'(x) |
(6.22) |
|||||
£¤¥ g { ¡¥§à §¬¥à ï ª®áâ â |
¢§ ¨¬®¤¥©á⢨ï. ®á«¥ ¯¥à¥å®¤ ª ¯à¥¤áâ ¢«¥¨î ¢§ ¨¬®¤¥©á⢨ï |
||||||||
®¯¥à â®àë ¯®«¥© '(x) ¨ (x) 㤮¢«¥â¢®àïîâ á«¥¤ãî騬 ãà ¢¥¨ï¬: |
|
||||||||
|
^ |
|
|
|
|
|
2 |
|
|
|
(ir + m) IR(x) = 0 |
|
( + m |
) IR(x) = 0 |
(6.23) |
||||
ãà ¢¥¨¥ (6.17) ¨¬¥¥â ¢¨¤: |
|
|
|
|
|
|
|
|
|
i |
~@ |
(t) |
= g |
Zct=x0 |
3 |
r |
|
|
(6.24) |
@t |
d |
IR(x) IR(x)'IR(x) (t) |
|||||||
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
à ¢¥¨¥ (6.17) ¬®¦® ®¡®¡é¨âì, ᤥ« ¢ ¥£® ª®¢ ਠâë¬. â® ®¡®¡é¥¨¥ ¯à®¨§¢®¤¨âáï ¯ã⥬ ¢¢¥¤¥¨ï ¯à®¨§¢®«ì®© £¨¯¥à¯®¢¥àå®á⨠¢ ¯à®áâà á⢥ { ¢à¥¬¥¨ ¢¬¥áâ® \¯«®áª®©" ¯®¢¥àå®á⨠t = const. ¤¨á⢥®¥ ãá«®¢¨¥, ª®â®à®¬ã ¤®«¦ 㤮¢«¥â¢®àïâì íâ ¯®¢¥àå®áâì { ®à¬ «ì ª ¥© n (x) ¢ «î¡®© â®çª¥ r ¤®«¦ ¡ëâì ¢à¥¬¥¨ { ¯®¤®¡®©, â.¥. n (r)n (r) > 0. â® ®§ ç ¥â, çâ® ¨ª ª¨¥ ¤¢¥ â®çª¨ ¤ ®© ¯®¢¥àå®á⨠¥ ¬®£ãâ ¡ëâì á¢ï§ ë á¢¥â®¢ë¬ á¨£ «®¬, ¨«¨
¦¥, çâ® «î¡ë¥ ¤¢¥ â®çª¨ ¯®¢¥àå®áâ¨ à §¤¥«¥ë ¯à®áâà á⢥® { ¯®¤®¡ë¬ |
|||
¨â¥à¢ «®¬. ¡®§ 稬 â ªãî ¯®¢¥àå®áâì ᨬ¢®«®¬ . «î¡®© â®çª¥ r |
í⮩ |
||
¯®¢¥àå®á⨠¬®¦® ¢¢¥á⨠¢à¥¬ï t(r), §ë¢ ¥¬®¥ «®ª «ìë¬ ¢à¥¬¥¥¬. ¯à¥¤¥«¥, |
|||
ª®£¤ ¯®¢¥àå®áâì áâ ®¢¨âáï ¯«®áª®©, ¢á¥ â®çª¨ ¥© ¨¬¥îâ ®¤¨ ª®¢®¥ ¢à¥¬ï |
|||
t = const. ¥¯¥àì ¬®¦® ®¡®¡é¨âì |
(t) ¢¢¥¤ï |
[t(r)]. ᮢ®¥ ãà ¢¥¨¥ (6.17) |
|
i~@ |
(t) = HI(t) |
(t) |
(6.25) |
|
@t |
|
|
¬®¦® ⥯¥àì à áᬮâà¥âì ª ª १ã«ìâ â á㬬¨à®¢ ¨ï ¡¥áª®¥ç®£® àï¤ |
ãà ¢- |
¥¨©, ¯®«ãç¥ëå ¢¢¥¤¥¨¥¬ «®ª «ì®£® ¢à¥¬¥¨ ¤«ï ª ¦¤®© â®çª¨ ¯à®áâà - á⢥® { ¯®¤®¡®© ¯®¢¥àå®áâ¨. ᫨ £ ¬¨«ì⮨ ¢§ ¨¬®¤¥©áâ¢¨ï ¢ëà §¨âì ª ª á㬬㠯® ¬ «ë¬ âà¥å¬¥àë¬ ï祩ª ¬ V ¯à®áâà á⢥® { ¯®¤à®¡®© ¯®¢¥àå®- á⨠, â.¥.
|
|
HI = |
|
HI(x) V |
(6.26) |
|
|
|
X |
|
r; t(r) |
â® ãà ¢¥¨¥ ¢ ¬ «®© ï祩ª¥ ¢®ªà㣠¯à®áâà á⢥® { ¢à¥¬¥®© â®çª¨ |
|||||
¬®¦® § ¯¨á âì ¢ ¢¨¤¥: |
|
|
|
|
|
i~ |
@ |
[t(r)] |
= HI(x) V [t(r)] |
(6.27) |
|
|
@t(r) |
||||
çâ® ®¡®¡é ¥â ãà ¢¥¨¥ (6.17). ®áª®«ìªã ¢ ਠæ¨ï (t), ᮮ⢥âáâ¢ãîé ï ¦¥áâ- |
ª®¬ã ¡¥áª®¥ç® ¬ «®¬ã ¯¥à¥¬¥é¥¨î £¨¯¥à¯«®áª®á⨠t = const ª ª 楫®£®, ®¯à¥- ¤¥«ï¥âáï ¨â¥£à «®¬ Rt HI d3r, â® ïá®, çâ® ¢ ਠæ¨ï [t(r)] ®в®б¨в¥«м® в®зª¨ x ¡г¤¥в ®¯а¥¤¥«пвмбп н¥а£¨¥© ¢§ ¨¬®¤¥©бв¢¨п ¢ HI(x) V ¢ ¡¥áª®¥ç® ¬ «®¬ ®¡ê- ¥¬¥ ¢®ªà㣠x. ®áª®«ìªã ¯à®¨§¢¥¤¥¨¥ V t ï¥âáï ५ï⨢¨áâ᪨ ¨¢ ਠâ- ë¬, â® ¯à 訢 ¥âáï á«¥¤ãîé ï ¨¢ ਠâ ï ¯à®æ¥¤ãà ¤¨ää¥à¥æ¨à®¢ ¨ï.áᬮâਬ äãªæ¨î ¯à®áâà á⢥® { ¯®¤®¡®© ¯®¢¥àå®á⨠[t(r)] = ( ).à ¢¨¬ § ⥬ ¢¥«¨ç¨ë íâ¨å äãªæ¨© ¤¢ãå ¯à®áâà á⢥® { ¯®¤®¡ëå ¯®- ¢¥àå®áâïå ¨ 0, ª®â®àë¥ ¡¥áª®¥ç® ¬ «® ®â«¨ç îâáï ¢ ®ªà¥áâ®á⨠â®çª¨ x,
|
125 |
¨á. 6-1
ª ª íâ® ¯®ª § ® ¨á.6-1. ¯à¥¤¥«¨¬ ⥯¥àì ¨¢ ਠâãî ®¯¥à æ¨î á«¥¤ãî騬 ®¡à §®¬:
( ) |
= |
lim |
|
|
[t(r+ t(r)] ; |
|
[t(r)] |
|||||
|
|
|
|
|
||||||||
(x) |
|
t V !0 |
|
|
|
c |
|
V d3r t(r) |
||||
|
|
( ) |
|
|
|
|
R |
|
( 0) |
; |
( ) |
|
|
|
|
= |
|
lim |
|
|
|
||||
|
|
(x) |
|
|
c t(r) V |
|||||||
|
|
|
|
t V |
! |
0 |
||||||
|
|
|
|
|
|
|
|
|
( 0) |
|
|
|
|
|
( ) |
= |
lim |
|
; |
( ) |
|||||
|
|
|
|
|
|
|
||||||
|
|
(x) |
|
|
(x)!0 |
(x) |
= (x)
(6.28)
£¤¥ !(x) { 4-®¡ê¥¬, § ª«îç¥ë© ¬¥¦¤ã ¨ 0. ®£¤ ¢ ¯à¥¤¥«¥ (x) ! 0 ãà ¢¥¨¥ (6.27) ¬®¦® ¯¥à¥¯¨á âì ¢ ¢¨¤¥ â ª §ë¢ ¥¬®£® ãà ¢¥¨ï ®¬® £ { ¢¨£¥à :
i~c |
( ) |
= HI(x) ( ) |
(6.29) |
(x) |
â® ãà ¢¥¨¥ ª®¢ ਠâ®, ¯®áª®«ìªã HI(x) ¯à¥¤áâ ¢«ï¥â ᮡ®© ५ï⨢¨áâ᪨© ¨¢ ਠâ (᪠«ïà), ¤«ï ®¯à¥¤¥«¥¨ï ¯à®áâà á⢥® { ¯®¤®¡®© ¯®¢¥àå®á⨥ âॡã¥âáï ª ª®© - «¨¡® ®¯à¥¤¥«¥®© «®à¥æ¥¢áª®© á¨áâ¥¬ë ®âáç¥â . ®í⮬ã ãà ¢¥¨¥ ®¬® £ { ¢¨£¥à § ¯¨áë¢ ¥âáï ¡¥§ 㪠§ ¨ï á¨áâ¥¬ë ª®®à¤¨ â, ª ª®â®à®© ®® ®â®á¨âáï. ¯à®ç¥¬, ¢ ¤ «ì¥©è¥¬ ¬ë, ¢ ®á®¢®¬, ¡ã¤¥¬ à ¡®â âì á ãà ¢¥¨¥¬ (6.17), § ¯¨á ®¬ ¢ ª®ªà¥â®© á¨á⥬¥ ª®®à¤¨ â.
§«®¦¥¨¥ S-¬ âà¨æë.
¥è¥¨¥ ãà ¢¥¨ï ¤¢¨¦¥¨ï ¢ ¯à¥¤áâ ¢«¥¨¨ ¢§ ¨¬®¤¥©á⢨ï (6.17) ¬®¦® § ¯¨- á âì ¢ ¨â¥£à «ì®¬ ¢¨¤¥:
|
i |
t |
|
|
|
(t) = (t0) ; |
Zt0 |
dt0HI(t0) (t0) |
(6.30) |
||
|
|||||
~ |
|||||
¤¥áì ãç⥮ ¨ ç «ì®¥ ãá«®¢¨¥ | ¯à¨ t = t0 äãªæ¨ï |
᢮¤¨âáï ª (t0). |
126 |
|
¯¨è¥¬ á¢ï§ì (t) á (t0) ¢ ¢¨¤¥4: |
|
(t) = U(t; t0) (t0) |
(6.31) |
(t0) = U;1(t; t0) (t) |
|
U(t0; t0) = 1
£¤¥ U(t; t0) { ã¨â àë© (á®åà ïî騩 ®à¬¨à®¢ªã!) ®¯¥à â®à í¢®«î樨. ®£¤ :
S = U(+1; ;1) |
(6.32) |
®¯à¥¤¥«ï¥â S-¬ âà¨æã (¬ âà¨æã à áá¥ï¨ï), ª®â®à ï ®¯à¥¤¥«ï¥â ¢á¥¢®§¬®¦ë¥ ¨§- ¬¥¥¨ï á®áâ®ï¨© á¨áâ¥¬ë ¢ १ã«ìâ ⥠¢§ ¨¬®¤¥©á⢨ï:
(+1) = S (;1) |
(6.33) |
£¤¥ (;1) ¨ (+1) { ᨬ¯â®â¨ç¥áª¨¥ ¢¥ªâ®à á®áâ®ï¨ï á¨á⥬ë, ¢ ç áâ®áâ¨, ᨬ¯â®â¨ç¥áª¨¥ ä®à¬ë ¯ ¤ î饩 ¨ à á室ï饩áï ¢®« ¢ § ¤ ç¥ à áá¥ï¨ï.
¯¥à â®à U(t; t0) 㤮¢«¥â¢®àï¥â á«¥¤ãî饬㠤¨ää¥à¥æ¨ «ì®¬ã ãà ¢¥¨î, ®ç¥¢¨¤®¬ã ¨§ (6.17):
i~@U(t; t0) |
= HI(t)U(t; t0) |
|
(6.34) |
|||||
|
|
|
|
@t |
|
|
|
|
«®£¨ç®: |
|
@U |
+(t; t0) |
|
|
|
||
; i~ |
= U+(t; t0)HI(t) |
|
(6.35) |
|||||
|
|
@t |
|
|
||||
¯®áª®«ìªã HI(t) íନ⮢. § íâ¨å ãà ¢¥¨© áà §ã á«¥¤ã¥â, çâ® |
|
|||||||
|
@ |
(U+(t; t0)U(t; t0)) = 0 |
|
(6.36) |
||||
|
|
|
||||||
|
@t |
|
|
|
|
|
||
çâ® íª¢¨¢ «¥â® |
|
|
|
|
|
|
|
|
|
|
U+(t; t0)U(t; t0) = 1 |
|
(6.37) |
||||
«ï ¤®ª § ⥫ìá⢠ã¨â à®á⨠㦮 ¥é¥ ¯®ª § âì, çâ® |
|
|||||||
|
|
U(t; t0)U+(t; t0) = 1 |
|
(6.38) |
||||
믮«ï¥âáï á«¥¤ãî饥 £à㯯®¢®¥ ᢮©á⢮ ®¯¥à â®à í¢®«î樨: |
|
|||||||
U(t; t1)U(t1; t0) = U(t; t0) |
|
(6.39) |
||||||
á ¬®¬ ¤¥«¥, ¨§ |
|
|
|
|
|
|
|
|
(t) = U(t; t1) |
(t1) |
|
(t1) = U(t1; t0) |
(t0) |
(6.40) |
|||
á«¥¤ã¥â: |
|
|
|
|
|
|
|
|
(t) = U(t; t0) (t0) = U(t; t1)U(t1; t0) |
(t0) |
(6.41) |
çâ® ¨ âॡã¥âáï ¤«ï ¢ë¯®«¥¨ï (6.39). ᫨ ¢ (6.39) ¯®«®¦¨âì t = t0, â® ¯®«ã稬:
U(t0; t1) = U;1(t1; t0) |
(6.42) |
4 §« £ ¥¬ë© ¨¦¥ ä®à¬ «¨§¬ ¯à¨ ¤«¥¦¨â ©á®ã.
|
127 |
§ à ¢¥á⢠U(t0; t1)U(t1; t0) = 1, 㬮¦ ï ¥£® á«¥¢ |
U+(t0; t1) ¨ ¨á¯®«ì§ãï |
(6.37), ¯®«ã稬: |
|
U(t1; t0) = U+(t0; t1) = U;1(t0; t1) |
(6.43) |
çâ® ¨ ¤®ª §ë¢ ¥â ã¨â à®áâì ®¯¥à â®à í¢®«î樨.
¥¯®á।á⢥® ¨§ £à㯯®¢®£® ᢮©á⢠(6.39) ¢ë⥪ ¥â, çâ® «î¡®© ¯¥à¥å®¤ á¨- áâ¥¬ë ª®¥ç®¬ ¨â¥à¢ «¥ ¢à¥¬¥¨ ¬®¦® ¯à¥¤áâ ¢¨âì ¢ ¢¨¤¥ ¯à®¨§¢¥¤¥¨ï ¯®á«¥¤®¢ ⥫ì®á⨠¡¥áª®¥ç® ¬ «ëå ¯à¥®¡à §®¢ ¨©, ᮢ¥àè ¥¬ëå á ¯®¬®éìî ®¯¥à â®à í¢®«î樨:
U(t; t0) = U(t; t1)U(t1; t2):::U(tn;1; tn)U(tn; t0) |
(6.44) |
£¤¥ U(tj; tj+1) { ¡¥áª®¥ç® ¬ «®¥ ¯à¥®¡à §®¢ ¨¥ ®â ¬®¬¥â ¢à¥¬¥¨ tj ª tj+1.¥è¥¨¥ ãà ¢¥¨ï (6.34), ®ç¥¢¨¤®, â ª¦¥ ¬®¦¥â ¡ëâì § ¯¨á ® ¢ ¨â¥£à «ì®¬
¢¨¤¥: |
|
|
|
|
|
|
t |
|
|
|
|
|
|
|
|
i |
|
|
|
|
|
|
|
|
|
|
U(t; t0) = 1 ; |
Zt0 |
d HI( )U( ; t0) |
(6.45) |
|||||
|
|
|
|
||||||||
|
|
|
~ |
||||||||
®í⮬ã, ¤«ï ¡¥áª®¥ç® ¬ «®© à §®á⨠¢à¥¬¥ tj ; tj+1 ¨¬¥¥¬: |
|
||||||||||
|
|
|
|
|
|
i |
tj |
|
|
||
|
|
|
|
|
|
|
|
|
|
||
|
|
|
U(tj; tj+1) = 1 ; |
|
Ztj+1 d HI( )U( ; tj+1) |
|
|||||
|
|
|
~ |
|
|||||||
|
|
i |
tj |
|
|
|
|
i |
tj |
|
|
|
1 ; |
Ztj+1 dt0HI(t0)U(tj+1; tj+1) = 1 ; |
Ztj+1 dt0HI(t0) |
(6.46) |
|||||||
|
|
|
|||||||||
|
~ |
~ |
¥®£à ¨ç¥® 㢥«¨ç¨¢ ï ç¨á«® ¨â¥à¢ «®¢ ¨ £à㯯¨àãï ç«¥ë ¨§ (6.44) ¯®«ã-
ç ¥¬: |
~ |
Zt0 |
|
|
|
~ |
|
|
Zt0 |
Zt0 |
||
|
|
|
|
2 |
||||||||
U(t; t0) = 1 + |
;i |
|
t dt1HI(t1) + |
;i |
|
|
t dt1 |
t1 dt2HI(t1)HI(t2) + |
||||
|
|
|
~ |
|
Zt0 |
Zt0 |
|
Zt0 |
|
|
||
|
+ |
;i |
3 |
t dt1 |
|
t1 dt2 |
|
t2 |
dt3HI(t1)HI(t2)HI(t3) + ::: (6.47) |
áᬮâਬ ¨â¥£à «, ®¯à¥¤¥«ïî騩 n-© ¯®à冷ª ⥮ਨ ¢®§¬ã饨©:
t |
t1 |
tn;1 |
|
|
Zt0 |
dt1 Zt0 |
dt2::: Zt0 |
dtnHI(t1)HI(t2):::HI(tn) |
(6.48) |
⥣à¨à®¢ ¨¥ §¤¥áì ¢¥¤¥âáï, ¯® áãé¥áâ¢ã, ¯® ¢á¥¬ã ¨â¥à¢ «ã ¢à¥¬¥¨ ®â t0 ¤® t, á
⥬ ®£à ¨ç¥¨¥¬, çâ® ¬®¬¥â ¢à¥¬¥¨ tj à ìè¥ ¬®¬¥â tj;1(j n). áâ¥á⢥®, çâ® ¢ ¢ëà ¦¥¨¨ (6.48) ¬®¦® ¯à®¨§¢®«ìë¬ ®¡à §®¬ ¯¥à¥®¡®§ ç¨âì ¯¥à¥¬¥ë¥
¨â¥£à¨à®¢ ¨ï t1; :::; tn ! tp1 ; tp2 :::tpn, ®â 祣® § 票¥ ¨â¥£à « ¥ ¨§¬¥¨âáï.த¥« ¢ ¢á¥ ¯¥à¥áâ ®¢ª¨ ¯¥à¥¬¥ëå t1; :::; tn, á«®¦¨¢ ¢á¥ ¢ëà ¦¥¨ï ¨ à §¤¥«¨¢ ç¨á«® ¯¥à¥áâ ®¢®ª n!, ¬ë à á¯à®áâà ¨¬ ®¡« áâì ¨â¥£à¨à®¢ ¨ï ¯® ª ¦¤®© ¯¥à¥¬¥®© ¢¥áì ¨â¥à¢ « ®â t0 ¤® t. ãé¥á⢥® ¯à¨ í⮬, ®¤ ª®, çâ®¡ë ®¯¥-
à â®àë HI(tj) ¯®¤ § ª®¬ ¨â¥£à « ¢á¥£¤ à ᯮ« £ «¨áì á¯à ¢ |
«¥¢® ¢ ¯®à浪¥ |
¢®§à áâ ¨ï ¢à¥¬¥¨. â® ¬®¦® ®¡¥á¯¥ç¨âì ¢¢¥¤¥¨¥¬ ®¯¥à â®à |
T -㯮à冷票ï, |
ª®â®àë© ¤¥©áâ¢ãï ¯à®¨§¢¥¤¥¨¥ ®¯¥à â®à®¢, § ¢¨áïé¨å ®â ¢à¥¬¥¨, à ᯮ« - £ ¥â ¨å ¢ åà®®«®£¨ç¥áª®¬ ¯®à浪¥, â.¥. ®¯¥à â®à á ¡®«ì訬 § 票¥¬ ¢à¥¬¥¨ ¢ ¯à®¨§¢¥¤¥¨¨ á⮨â á«¥¢ :
T (HI(t1):::HI(tk)) = HI(ti)HI(tj):::HI(tk) ¯à¨ ti > tj > ::: > tk |
(6.49) |