ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 27.09.2024
Просмотров: 81
Скачиваний: 0
К сожалению, данная задача не может быть решена стандартным способом,
описанным в §1. Здесь не выполняется предпосылка о строгой выпуклости отношения предпочтения, кривые безразличия являются прямыми линиями и, следовательно, предельная норма замещения не убывает по мере движения вдоль кривой безразличия, а является постоянной величиной, равной тангенсу угла наклона кривых безразличия. В общем случае наклон бюджетной линии может не совпадать с наклоном линии уровня полезности, как показано на рис.2.5, что приведёт нас к угловому решению, когда будет покупаться только одно из благ. На рис. 2.5 это первое благо, на которое
потребитель и тратит весь свой
|
|
|
доход: x* = |
I |
; |
x* |
= 0. Если |
|||
|
|
|
|
|||||||
x2 |
|
|
1 |
p1 |
2 |
|
|
|
||
|
|
|
|
|
|
|
||||
|
|
|
соотношение |
цен |
на |
рынке |
||||
|
|
|
изменится, и линия бюджетного |
|||||||
|
|
|
ограничения |
|
станет |
более |
||||
|
|
|
крутой, |
то, |
|
возможно, |
||||
|
U3 |
|
потребитель |
переключится |
на |
|||||
|
U2 |
|
потребление |
второго |
блага, |
|||||
|
U1 |
|
||||||||
|
|
перестав покупать первое. |
|
|||||||
|
|
|
|
|||||||
|
БО |
|
Здесь |
|
|
предлагается |
||||
|
|
I |
авторское |
решение |
задачи |
|||||
|
X 1* = |
x1 потребительского |
выбора |
для |
||||||
P1 |
||||||||||
Рис. 2.5. |
случая |
|
|
совершенных |
||||||
|
|
|
|
|
субститутов, которое не приводится в других учебниках по микроэкономике. Возможно, вам удастся найти более простое и элегантное решение данной задачи.
Из уравнения бюджетного ограничения выразим x2 через x1 и подставим это выражение в функцию полезности:
(2.32) |
x |
2 |
= |
I |
− |
p1 |
x |
|
|
||||||
|
|
|
p2 |
|
p2 |
1 |
|
|
|
|
|
|
|
U = a x + b ( |
I |
− |
p1 |
x ) = |
|||||
|
|
|
|||||||
1 |
|
|
p2 |
|
1 |
||||
(2.33) |
|
|
|
p2 |
|||||
p1 |
|
|
|
|
I |
|
|||
=(a −b |
) x + b |
|
|||||||
|
|
||||||||
|
1 |
|
|
p2 |
|||||
|
p2 |
|
|
43
Исследуем данную функцию, учитывая ограниченную область значений, которые может принимать x1 :
|
|
|
U = ( |
a |
− |
p1 |
) b x |
+b |
|
I |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
b |
|
|
|
p2 |
1 |
|
|
|
|
p2 |
|
|
|
|
|
|
|
|
|
|
|
||||||||||
(2.34) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
x 0; |
|
I |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
Здесь функция полезности U зависит только от x1 и она линейна. Следовательно, |
||||||||||||||||||||||||||||||||||||||||
а) если |
a > |
p1 |
, |
тогда U (x ) |
|
– |
возрастающая |
|
функция |
и |
её максимум |
|||||||||||||||||||||||||||||
|
|
|
||||||||||||||||||||||||||||||||||||||
|
b |
|
p2 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
достигается при наибольшем значении x , то есть при |
x* = |
|
I |
. Тогда x* |
= 0. |
|||||||||||||||||||||||||||||||||||
|
|
|
||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
1 |
|
|
p1 |
|
|
2 |
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
б) если |
a < |
p1 |
, |
|
тогда U (x ) |
– убывающая функция и её наибольшее значение |
||||||||||||||||||||||||||||||||||
|
|
|
||||||||||||||||||||||||||||||||||||||
|
b |
p2 |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
будет достигаться при наименьшем значении x |
x* = 0, |
|
x* = |
I |
. |
|
|
|
||||||||||||||||||||||||||||||||
|
|
|
|
|
||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
1 |
|
|
2 |
|
p2 |
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
в) если a = |
p1 |
, |
тогда U не зависит от |
x x* 0; |
|
|
I |
, |
x* |
0; |
I |
. |
||||||||||||||||||||||||||||
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||
b p2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
1 |
|
|
|
|
2 |
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p1 |
|
|
|
p2 |
||||||||||||
Итак, функция некомпенсированного спроса на товар 1 может быть представлена |
||||||||||||||||||||||||||||||||||||||||
следующим образом: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
x* |
|
= |
I |
|
, если a > |
p1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
1 |
|
|
|
p1 |
|
|
|
|
|
b |
p2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
(2.35) |
|
|
|
x* |
|
0; |
|
|
I |
|
, если |
a = |
p1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
b |
p |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
x* |
|
=0, если a < |
p1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
b |
|
p2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44
Этот вывод согласуется с принципом углового решения: если MRS > |
|
p1 |
(а в |
||||||||||||
|
p2 |
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
нашем случае |
MRS = a ), то потребитель будет потреблять только первое благо. |
|
|||||||||||||
|
|
|
|
b |
|
|
|
|
|
|
|
|
|||
x2 |
|
|
|
|
|
|
|
|
|
|
Абсолютно |
||||
|
|
|
|
|
|
|
|
взаимодополняемые |
|||||||
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
блага |
|
(совершенные |
|||
|
|
|
|
Наклон луча= |
a |
=tg(α) комплементы). Это такие |
|||||||||
БО |
|
|
|
|
|
|
|
b |
|
товары, |
которые всегда |
||||
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
потребляются |
|
вместе |
||||
|
|
|
|
|
|
|
U3 |
|
|
|
|||||
|
|
|
С |
|
|
|
|
|
некоторым |
индивидом и |
|||||
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|||||||
* |
|
|
|
|
|
|
|
|
всегда |
в |
фиксированной |
||||
X 2 |
|
|
|
|
|
U2 |
|
|
|||||||
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
пропорции. |
В |
реальной |
|||
|
|
|
|
|
|
|
U1 |
|
|
жизни |
примерами |
таких |
|||
α |
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
благ могут служить правая |
|||||||
|
X1* |
|
|
|
|
x1 |
|||||||||
|
|
|
|
|
и левая перчатка, правый и |
||||||||||
Рис. 2.6. |
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
левый ботинок, теннисная ракетка и теннисный мяч. Для отдельных потребителей это – чай и сахар, кофе и молоко, джин и тоник. Вообще следует иметь в виду, что принадлежность благ к совершенным комплементам и совершенным субститутам зависит только от вкусов и предпочтений того или иного потребителя. Для кого-то, например, огурцы и помидоры являются взаимозаменяемыми благами, а кто-то потребляет их только вместе в салате как взаимодополняемые товары.
Здесь не выполняются предпосылки о строгой монотонности и строгой выпуклости отношения предпочтения. Функция полезности не дифференцируема и не возрастает при увеличении значения только одной из переменных. Кривые безразличия
(см. рис. 2.6) имеют необычную конфигурацию.
Такой вид кривых безразличия означает, что увеличение количества одного из благ без соответствующего увеличения количества другого блага не изменит полезности этого набора для потребителя. Отсюда понятно, что норма замещения
одного блага другим в этом случае равна нулю: |
|
|
||||
(2.36) |
RS = − |
∆x2 |
|
0 |
= 0 |
|
= |
||||||
|
||||||
|
|
∆x1 |
U=const |
∆x1 |
45
В принципе, можно также сказать, что норма замещения одного блага другим бесконечно велика:
(2.37) |
RS = − |
∆x2 |
= − |
∆x |
=→ ±∞ |
|
||
∆x1 |
|
|||||||
0 |
|
|||||||
|
|
|
U=const |
|
|
|
||
|
|
|
|
|
|
|
||
Предельная |
|
|
dx2 |
|
||||
норма замещения MRS = 0 , так как − |
=0 при подходе справа |
|||||||
dx |
||||||||
|
|
|
|
|
|
|
||
|
|
|
|
|
1 |
|
( − dx2 при походе слева не существует). dx1
Функция полезности для совершенных комплементов будет иметь вид:
(2.37) U (x1, x2 ) = min{ax1,bx2 }, где a,b > 0, a,b = const
Знак «min» означает, что уровень полезности определяется значением наименьшего из элементов в фигурных скобках. Рассмотрим три возможных случая.
Пусть a x1 < b x2 , тогда U (x1 , x2 ) = a x1 .
В этом случае количество второго блага оказывается избыточным. Пусть теперь
a x1 |
> b x2 , |
тогда U (x1 , x2 ) = b x2 . |
||
Здесь избыточным оказывается количество первого блага. И, наконец, |
||||
предположим, |
что |
a x1 = b x2 , тогда U (x1 , x2 ) = a x1 = b x2 . Здесь товары |
||
потребляются в нужных пропорциях. Когда это происходит, |
||||
|
|
x2 |
a |
|
(2.38) |
|
|
= b . |
|
|
x |
|
||
|
1 |
|
|
Это и есть пропорция, в которой должны потребляться блага, являющиеся совершенными комплементами. Экономический смысл коэффициентов в данной функции полезности в том и состоит, что они показывают пропорцию потребления взаимодополняемых благ.
Пусть, например, потребитель всегда на одну чашку чая кладёт две ложки сахара: x1 –
число чашек чая; x2 – число ложек сахара. Тогда U (x1 , x2 ) = min{x1 , 12 x2 }, то есть a =1, b = 12 .
Задача максимизации полезности для случая совершенных комплементов выглядит следующим образом:
46
maxU (x1, x2 ) = max(min{ax1,bx2 })
(2.39) |
x1 , x2 |
x1 , x2 |
|
|
|
|
при условии, что |
p1 x1 + p2 x2 = I |
К сожалению, данная задача не может быть решена стандартным способам, описанным в §1, так как рассматриваемая функция полезности является недифференцируемой. Её графическое решение представлено на рис. 2.6. Оптимальный набор (x1* , x2* ) всегда будет находиться на луче, выходящем из начала координат под углом, тангенс которого
равен ba , в той его точке, где этот луч пересекается с линией бюджетного ограничения.
На рис. 2.6 это точка С. Данное графическое решение означает, что потребитель максимизирует полезность, полностью расходуя свой доход на покупку товарного набора, и потребляет блага в правильной пропорции.
Однако графический анализ не позволяет вывести функции спроса потребителя. Здесь предлагается авторское решение задачи потребительского выбора для случая совершенных комплементов, которое не приводится в других учебниках по микроэкономике. Возможно, вам удастся найти более простое и элегантное решение данной задачи.
Из уравнения бюджетного ограничения выразим x2 через x1 и подставим это выражение в функцию полезности:
x |
2 |
= |
I |
− |
p1 |
x |
|
|
|||||
|
|
p2 |
|
p2 |
1 |
|
|
|
|
|
|
U
U=b· I -b· P1 ·x1
P2 P2
С U=a·x1
|
α |
β |
0 |
|
|
X1* |
X1' |
Рис. 2.7.
|
|
I |
|
p1 |
|
|
U (x1) = min a x1 |
,b ( |
− |
x1) |
|||
p2 |
p2 |
|||||
|
|
|
|
|
|
Теперь U зависит только от одной |
||||||||
|
переменной – |
x1 . В фигурных скобках |
||||||||
|
представлены |
|
фактически |
два типа |
||||||
|
зависимости |
U |
от |
x1 : U (x1 ) = a x1 |
||||||
|
U (x ) = b |
|
I |
−b |
p1 |
x . |
Обе |
|||
|
|
|
|
|||||||
|
|
1 |
|
p2 |
|
|
p2 |
1 |
|
|
|
|
|
|
|
|
|
|
|||
|
зависимости |
линейные |
и представлены |
|||||||
x1 |
на |
рис. 2.7 |
в |
виде |
прямых. Прямая |
|||||
U |
= a x1 имеет положительный наклон |
|||||||||
|
||||||||||
|
(tgα = a) . |
|
|
Вторая |
|
зависимость |
47