ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.11.2019
Просмотров: 2291
Скачиваний: 8
Поступление воды в клетку обусловлено не только осмотическим давлением, но и силой набухания. Набуханием называют поглощение жидкости или пара высокомолекулярным веществом (набухающим телом), сопровождаемое увеличением объема. Явление набухания обусловлено коллоидальными и капиллярными эффектами. В протоплазме преобладает набухание на коллоидальной основе (гидратация коллоидов), а в клеточной стенке наблюдаются оба эффекта: капиллярный - накопление воды между микрофибриллами и в межмицеллярных пространствах и коллоидальный - гидратация полисахаридов, особенно гемицеллюлоз.
У некоторых частей растений поглощение воды происходит исключительно путем набухания, например, у семян. Вода диффундирует в набухающее тело. Благодаря большому сродству набухающего тела к воде при набухании может возникать давление набухания в несколько сотен атмосфер. Силу набухания обозначают термином матричный потенциал .
Таким образом, для клетки характерны следующие уравнения водного потенциала:
вакуоль: -w = -- p
протоплазма: -w = --p -
клеточная стенка: -w = -
Вода в клетку может поступать также в процессе пиноцитоза, когда часть плазмалеммы под влиянием различных причин, чаще всего в результате адсорбции на плазмалемме крупных молекул и вирусных частиц, прогибается внутрь клетки, внешние края такой инвагинации смыкаются и виде пузырька - везикулы с адсорбированной частицей и внешним раствором проходит внутрь цитоплазмы.
2.5. Поступление ионов в клетку
Все неорганические питательные вещества поглощаются в форме ионов, содержащихся в водных растворах. Поглощение ионов клеткой начинается с их взаимодействия с клеточной стенкой. Ионы могут частично локализоваться в межмицеллярных и межфибриллярных промежутках клеточной стенки, частично связываться и фиксироваться в клеточной стенке электрическими зарядами.
Поступившие ионы легко вымываются. Объем клетки, доступный для свободной диффузии ионов, получил название свободного пространства. Свободное пространство включает межклетники, клеточные стенки и промежутки, которые могут возникать между клеточной стенкой и плазмалеммой. Иногда его называют кажущееся свободное пространство (КСП). Термин “кажущееся” означает, что его объем зависит от объекта и природы растворенного вещества. КСП занимает в растительных тканях 5-10 % объема. Свободное пространство всего растения получило название апопласт, в отличие от симпласта - совокупности протопластов всех клеток.
Поглощение и выделение веществ в КСП - физико-химический пассивный процесс, не зависимый от температуры и ингибиторов энергетического и белкового обменов. Клеточная стенка обладает свойствами ионообменника, так как в ней адсорбированы ионы Н+ и НCO-3, обменивающиеся в эквивалентных количествах на ионы внешнего раствора. В клеточную стенку входят амфотерные белковые соединения, заряд которых меняется при изменение рН. Поэтому адсорбция ионов зависит от величины рН. Из-за преобладания отрицательных фиксированных зарядов в клеточной стенке происходит первичное концентрирование катионов (особенно двух- и трехвалентных).
Для того, чтобы проникнуть в цитоплазму и включиться в обмен веществ, ионы должны пройти через плазмалемму. Транспорт ионов через мембрану может быть пассивным и активным. Пассивное поглощение не требует затрат энергии и осуществляется путем диффузии по градиенту концентрации вещества, для которого плазмалемма проницаема. Пассивное передвижение ионов определяется не только химическим потенциалом , как это имеет место при диффузии незаряженных частиц, но и электрическим потенциалом . Оба потенциала объединяют в виде электрохимического потенциала : = + nF, где - химический, - электрический, - электрохимический потенциалы, n - валентность иона, F - константа Фарадея. Любая разность электрических потенциалов, которая возникает на мембранах, вызывает соответствующее перемещение ионов.
Электрический потенциал на мембране - трансмембранный потенциал может возникнуть по следующим причинам: 1) если поступление ионов идет по градиенту концентрации, но благодаря разной проницаемости мембраны с большей скоростью поступают катионы, чем анионы. В силу этого на мембране возникает разность электрических потенциалов, что приводит к диффузии противоположно заряженного иона; 2) при наличии на внутренней стороне мембраны белков, фиксирующих определенные ионы. За счет фиксированных зарядов создается дополнительная возможность поступления ионов противоположного заряда; 3) в результате активного транспорта либо катиона, либо аниона, в этом случае противоположно заряженный ион может передвигаться пассивно по градиенту электрического потенциала.
Активный транспорт - это транспорт, идущий против электрохимического градиента с затратой энергии, выделяющейся в процессе метаболизма. В определенных пределах с повышением температуры скорость активного поглощения веществ возрастает. В отсутствие кислорода, в атмосфере азота поступление ионов резко тормозится. Под влиянием дыхательных ядов, таких как цианистый калий, окись углерода, и ингибиторов дыхания, таких как 2,4-динитрофенол, азид натрия, транспорт ионов ингибируется. С другой стороны, увеличение содержания АТФ усиливает процесс поглощения.
Опыты, проведенные на искусственных липидных мембранах, показали, что перенос ионов может происходить под влиянием некоторых антибиотиков - ионофоров, вырабатываемых бактериями и грибами. В одних случаях катион входит во внутреннюю полость молекулы ионофора. Образованный комплекс диффундирует через мембрану во много раз быстрее по сравнению со свободным ионом. Ионофоры другого типа взаимодействуют с мембранами, образуя в них поры.
Активный транспорт ионов через мембрану осуществляется с помощью переносчиков. Ион реагирует со своим переносчиком на поверхности плазмалеммы. Комплекс переносчика с ионом подвижен в самой мембране и передвигается к ее внутренней стороне. Здесь комплекс распадается и ион освобождается во внутреннюю среду, а переносчик передвигается к внешней стороне мембраны. Подтверждением наличия переносчиков служит тот факт, что при увеличении концентрации солей в окружающем растворе скорость поступления солей сначала возрастает, а затем остается постоянной. Это объясняется ограниченным числом переносчиков. Переносчики специфичны, то есть участвуют в переносе только определенных ионов и, тем самым, обеспечивают избирательность поступления.
Транспорт с участием переносчиков может идти по градиенту электрохимического потенциала. Это пассивный транспорт, но благодаря переносчикам он идет с большей скоростью, чем обычная диффузия и этот процесс носит название облегченной диффузии.
Активный транспорт ионов идет с потреблением энергии, аккумулированной в АТФ. Для использования энергии АТФ должна быть гидролизована: АТФ + НОН АДФ + Фн. Этот процесс катализируется ферментом аденозинтрифосфатазой (АТФазой). АТФаза обнаружена в мембранах различных клеток. Транспортные АТФазы являются высокомолекулярными липопротеидами с мол. массой 200 - 700 кД. Для растений большое значение имеет Н+-АТФаза (водородный насос или водородная помпа), которая осуществляет перенос протонов через мембраны, используя энергию гидролиза АТФ. Н+-АТФаза - это одиночный полипептид с массой несколько большей 100 кД. Его содержание в плазмалемме растительных клеток достигает 15 % от общего количества белка. Перенос ионов водорода сопровождается переносом катионов в обратном направлении. Такой процесс называется антипорт. Вместе с протоном могут двигаться анионы - симпорт. Освобождаемая при распаде АТФ энергия используется для изменения конфигурации самой АТФазы, благодаря чему участок фермента, связывающий определенный ион, поворачивается и оказывается по другую сторону мембраны. Также выделены низкомолекулярные транспортные белки пермеазы (10 - 45 кД), лишенные ферментативной активности.
Пройдя через плазмалемму, ионы поступают в цитоплазму, где включаются в метаболизм клетки. Внутриклеточный транспорт ионов осуществляется благодаря движению цитоплазмы и по каналам эндоплазматического ретикулума. Ионы попадают в вакуоль, если цитоплазма и органеллы уже насыщены ими. Для того, чтобы попасть в вакуоль, ионы должны преодолеть еще один барьер - тонопласт. Транспорт ионов через тонопласт совершается также с помощью переносчиков и требует затраты энергии. Переносчики, расположенные в тонопласте, имеют меньшее сродство к ионам и действуют при более высоких концентрациях ионов по сравнению с переносчиками плазмалеммы. В тонопласте была идентифицирована особая Н+-АТФаза. Она не тормозится диэтилстильбестролом – ингибитором Н+-АТФазы плазмплеммы.
3. ВОДНЫЙ ОБМЕН
3.1. Значение воды для растения
Вода является главной составной частью растений. Ее содержание неодинаково в разных органах растения (так, в листьях салата она составляет 95 %, а в сухих семенах - не более 10 % от массы ткани) и зависит от условий внешней среды, вида и возраста растения. Для своего нормального существования растение должно содержать определенное количество воды. Два процесса – поступление и испарение воды – называют водным балансом.
Вода - это среда, в которой протекают процессы обмена веществ. Все реакции гидролиза, окислительно-восстановительные реакции идут с участием воды. Вода служит источником кислорода, выделяемого при фотосинтезе, и водорода, используемого для восстановления углекислого газа. Вода поддерживает конформацию молекул белка, устойчивость структур цитоплазмы и оболочки клеток в упругом состоянии. С изменением тургорного давления связаны некоторые движения частей растений.
Заряды в молекуле воды распределены неравномерно, так как атом кислорода воды оттягивает электроны от атомов водорода. Поэтому молекула воды представляет собой диполь: один полюс молекулы заряжен положительно, а другой отрицательно. Благодаря этому молекулы воды могут ассоциировать друг с другом, ионами и белковыми молекулами. Вода участвует в поглощении и транспорте веществ, так как является хорошим растворителем. Гидратные оболочки, окружающие ионы, ограничивают их взаимодействие.
Вода обладает высокой теплоемкостью - 1кал/град, что позволяет растению воспринимать изменения температуры окружающей среды в смягченном виде. Испарение воды растениями - транспирация служит основным средством терморегуляции у растений. Растения испаряют очень много воды. Большой расход воды связан с тем, что растения обладают значительной листовой поверхностью, необходимой для поглощения углекислого газа, содержание которого в воздухе незначительно (0,032 %).
3.2. Формы почвенной влаги
По степени доступности для растения различают следующие формы почвенной влаги. Гравитационная вода заполняет промежутки между частицами почвы и хорошо доступна растениям. Однако она быстро испаряется и легко стекает в нижние горизонты почвы под влиянием силы тяжести, вследствие чего бывает в почве лишь после дождей. Капиллярная вода заполняет капилляры в почвенных частицах. Эта вода хорошо доступна для растений, она удерживается в капиллярах силами поверхностного натяжения и поэтому не только не стекает вниз, но и поднимается вверх от грунтовых вод. Пленочная вода окружает коллоидные частицы почвы. Вода из периферических слоев гидратационных оболочек может поглощаться корнями. Гигроскопическая вода адсорбируется сухой почвой при помещении ее в атмосферу с 95 %-ной относительной влажностью. Этот тонкий слой молекул воды удерживается с такой силой, что их водный потенциал достигает -1000 бар и она недоступна для растений.
Количество почвенной воды в процентах, при котором растение впадает в устойчивое завядание, называют коэффициентом или влажностью завядания. Завядание растений разных видов может начинаться при одной и той же влажности, но промежуток времени от завядания растения до его гибели (интервал завядания) у растений может быть различным. Так, для растений бобов он составляет несколько суток, а для растений проса - несколько недель. Завядание начинается позже у растений с более отрицательным осмотическим потенциалом и меньшей скоростью транспирации.
«Мертвый запас» влаги в почве - это количество воды полностью недоступной растению. Он зависит от механического состава почвы. Чем больше глинистых частиц в почве, тем больше «мертвый запас» влаги. Количество доступной для растения воды представляет собой разность между полевой влагоемкостью (максимальное количество воды, удерживаемое почвой) и «мертвым запасом».
3.3. Формы воды в растении
Вода в растении состоит из фракций, различающихся по своей подвижности из-за связи с различными соединениями. 85-90 % воды приходится на более подвижную фракцию. В эту фракцию входит резервная вода, заполняющая вакуоли и другие компартменты клетки. Она осмотически связана с сахарами, органическими кислотами, минеральными солями и другими растворенными в ней веществами. Осмотически связанной водой называют воду, образующую периферические слои гидратационных оболочек вокруг ионов и молекул. К подвижной фракции относят и интерстициальную воду, выполняющую транспортную функцию и находящуюся в клеточных стенках, межклетниках и сосудах растения.
Фракция малоподвижной воды составляет 10-15 % всей воды клетки. Это конституционная вода, химически связанная и входящая в состав неорганических соединений, а также гидратационная вода, образующая оболочки вокруг молекул веществ. Воду, гидратирующую мицеллы, называют коллоидносвязанной. Молекулы воды располагаются вокруг мицеллы несколькими слоями. Ближайший к поверхности мицеллы слой воды очень прочно связан. За этим слоем следуют все менее прочно связанные слои, молекулы которых могут обмениваться с молекулами свободной воды. Коллоидносвязанная вода необходима для нормального функционирования клетки и ее устойчивости при попадании в неблагоприятные условия. Коллоидные мицеллы могут гидратироваться не только путем присоединения молекул воды к гидрофильным группам, расположенным на поверхности - это так называемая мицеллярная гидратация, но и путем внедрения молекул воды внутрь мицеллы и присоединения к имеющимся здесь активным гидрофильным радикалам. Такая гидратация называется пермутоидной.
3.4. Корневая система как орган поглощения воды
Наземные растения, в основном, поглощают воду из почвы. Однако некоторое количество воды может попадать в листья из воздуха. Есть даже растения, для которых атмосфера является главным источником влаги. Это эпифиты, живущие на поверхности других растений, но не являющиеся паразитами. Они обладают воздушными корнями с полыми тонкостенными клетками и впитывают парообразную влагу и воду осадков подобно губке. У некоторых эпифитов дождевая вода собирается листьями и затем всасывается с помощью листовых волосков.